PVC-InternVL2-8B

[๐Ÿ“œ Paper] [๐Ÿ“‚ GitHub] [๐Ÿš€ Quick Start]

Introduction

We introduce the Progressive Visual Token Compression (PVC) in large vision-language models (VLMs), which unifies the visual inputs as videos and progressively compresses vision tokens across video frames. Our PVC achieves:

  • Preserve spatial details and temporal dynamics for both images and videos.
  • Effectively reduce the tokens used for each video frame and image tile.
  • SoTA performance on various video benchmarks, including long and fine-grained short video tasks.
  • No performance loss on image benchmarks, especially on detail-sensitive tasks.

Results

Our implementation is based on the InternVL2 model, referred to as PVCInternVL2

Video Understanding Benckmarks

Model LLaVA-OneVision-7B Qwen2-VL-7B InternVL2-8B PVCInternVL2-8B
# token/frame 196 - 256 64
MVbench 56.7 67.0 66.4 73.8
VideoMME w/o-sub 58.2 63.3 54.0 64.1
VideoMME w-sub 61.5 69.0 56.9 69.7
MLVU 64.7 - 52.0 72.4
LongVideoBench 56.5 - - 59.2
NextQA 79.4 - - 82.0
Egoschema 60.1 66.7 55.0 59.6
PercepTest 57.1 62.3 52.0 68.4
AcNet-QA 56.6 - - 57.1

Image Understanding Benckmarks

Model LLaVA-OneVision-7B Qwen2-VL-7B InternVL2-8B PVCInternVL2-8B
# token/image tile 729 - 256 64
AI2Dtest 81.4 83.0 83.8 83.8
ChartQAtest 80.0 83.0 83.3 84.1
DocVQAtest 87.5 94.5 91.6 92.5
InfoVQAtest 68.8 76.5 74.8 75.0
SQAtest 96.0 - 97.1 97.7
TextVQAval - 84.3 77.4 80.0
MMBen-test - 83.0 81.7 83.9
MMEsum 1998 2327 2210 2282
MMMUval 48.8 54.1 49.3 50.9
SEEDI 75.4 - 76.2 77.2
OCRBench - 866 794 807

Quick Start

import numpy as np
import torch
import torchvision.transforms as T
from decord import VideoReader, cpu
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer

IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform

def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio

def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images

def load_image(image_file, input_size=448, max_num=12):
    image = Image.open(image_file).convert('RGB')
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values

def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
    if bound:
        start, end = bound[0], bound[1]
    else:
        start, end = -100000, 100000
    start_idx = max(first_idx, round(start * fps))
    end_idx = min(round(end * fps), max_frame)
    seg_size = float(end_idx - start_idx) / num_segments
    frame_indices = np.array([
        int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
        for idx in range(num_segments)
    ])
    return frame_indices

def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
    vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
    max_frame = len(vr) - 1
    fps = float(vr.get_avg_fps())

    pixel_values_list, num_patches_list = [], []
    transform = build_transform(input_size=input_size)
    frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
    for frame_index in frame_indices:
        img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB')
        img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
        pixel_values = [transform(tile) for tile in img]
        pixel_values = torch.stack(pixel_values)
        num_patches_list.append(pixel_values.shape[0])
        pixel_values_list.append(pixel_values)
    pixel_values = torch.cat(pixel_values_list)
    return pixel_values, num_patches_list


path = 'OpenGVLab/PVC-InternVL2-8B'
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
generation_config = dict(max_new_tokens=1024, do_sample=True)

# single-image conversation
pixel_values = load_image('./assets/example_image1.jpg', max_num=12).to(torch.bfloat16).cuda()
data_flag = torch.tensor([1], dtype=torch.long).cuda()

question = '<image>\nWhat is in the image?'
response = model.chat(tokenizer, pixel_values, question, generation_config, data_flag=data_flag)
print(f'User: {question}\nAssistant: {response}')

# multi-image conversation
pixel_values1 = load_image('./assets/example_image1.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values2 = load_image('./assets/example_image2.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
data_flag = torch.tensor([2], dtype=torch.long).cuda()
num_patches_list = [pixel_values1.shape[0], pixel_values2.shape[0]]

question = 'Image-1: <image>\nImage-2: <image>\nWhat are the similarities and differences between these two images.'
response = model.chat(tokenizer, pixel_values, question, generation_config, data_flag=data_flag, num_patches_list=num_patches_list)
print(f'User: {question}\nAssistant: {response}')

# video conversation
pixel_values, num_patches_list = load_video('./assets/example_video.mp4', num_segments=64, max_num=1)
pixel_values = pixel_values.to(torch.bfloat16).cuda()
video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
# Frame1: <image>\nFrame2: <image>\n...\nFrameN: <image>\n{question}
data_flag = torch.tensor([3], dtype=torch.long).cuda()

question = video_prefix + 'Describe this video in detail.'
response = model.chat(tokenizer, pixel_values, question, generation_config, data_flag=data_flag, num_patches_list=num_patches_list)
print(f'User: {question}\nAssistant: {response}')

Evaluation

Please refer to our Github Repo.

Citation

If you find this work helpful in your research, please consider citing:

@article{yang2024pvc,
  title={PVC: Progressive Visual Token Compression for Unified Image and Video Processing in Large Vision-Language Models},
  author={Yang, Chenyu and Dong, Xuan and Zhu, Xizhou and Su, Weijie and Wang, Jiahao and Tian, Hao and Chen, Zhe and Wang, Wenhai and Lu, Lewei and and Dai, Jifeng},
  journal={arXiv preprint arXiv:2412.09613},
  year={2024}
}

License

This project is released under the MIT license. Parts of this project contain code and models from other sources, which are subject to their respective licenses.

Downloads last month
23
Safetensors
Model size
9.55B params
Tensor type
BF16
ยท
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.

Model tree for OpenGVLab/PVC-InternVL2-8B