InternVL_2_5_HiCo_R16 / tokenization_internlm2_fast.py
ynhe's picture
[Init] upload model
30b9ee4 verified
raw
history blame
7.79 kB
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
#
# This code is based on transformers/src/transformers/models/llama/tokenization_llama_fast.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization Fast class for InternLM."""
import os
from shutil import copyfile
from typing import Any, Dict, Optional, Tuple
from tokenizers import Tokenizer, decoders, normalizers, processors
from tokenizers.models import BPE
from transformers.convert_slow_tokenizer import (SLOW_TO_FAST_CONVERTERS,
SentencePieceExtractor,
SpmConverter)
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
from transformers.utils import logging
from .tokenization_internlm2 import InternLM2Tokenizer
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {'vocab_file': './tokenizer.model'}
# Modified from transformers.convert_slow_tokenizer.LlamaConverter
class InternLM2Converter(SpmConverter):
handle_byte_fallback = True
def vocab(self, proto):
vocab = [
('<unk>', 0.0),
('<s>', 0.0),
('</s>', 0.0),
]
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
return vocab
def unk_id(self, proto):
unk_id = 0
return unk_id
def decoder(self, replacement, add_prefix_space):
return decoders.Sequence(
[
decoders.Replace('▁', ' '),
decoders.ByteFallback(),
decoders.Fuse(),
decoders.Strip(content=' ', left=1),
]
)
def tokenizer(self, proto):
model_type = proto.trainer_spec.model_type
vocab_scores = self.vocab(proto)
# special tokens
added_tokens = self.original_tokenizer.added_tokens_decoder
for i in range(len(vocab_scores)):
piece, score = vocab_scores[i]
if i in added_tokens:
vocab_scores[i] = (added_tokens[i].content, score)
if model_type == 1:
raise RuntimeError('InternLM2 is supposed to be a BPE model!')
elif model_type == 2:
_, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores)
bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)}
tokenizer = Tokenizer(
BPE(bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, byte_fallback=True)
)
tokenizer.add_special_tokens(
[ added_token for index, added_token in added_tokens.items()]
)
else:
raise Exception(
"You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
)
return tokenizer
def normalizer(self, proto):
normalizers_list = []
if proto.normalizer_spec.add_dummy_prefix:
normalizers_list.append(normalizers.Prepend(prepend='▁'))
normalizers_list.append(normalizers.Replace(pattern=' ', content='▁'))
return normalizers.Sequence(normalizers_list)
def pre_tokenizer(self, replacement, add_prefix_space):
return None
SLOW_TO_FAST_CONVERTERS['InternLM2Tokenizer'] = InternLM2Converter
# Modified from transformers.model.llama.tokenization_llama_fast.LlamaTokenizerFast -> InternLM2TokenizerFast
class InternLM2TokenizerFast(PreTrainedTokenizerFast):
vocab_files_names = VOCAB_FILES_NAMES
slow_tokenizer_class = InternLM2Tokenizer
padding_side = 'left'
model_input_names = ['input_ids', 'attention_mask']
_auto_class = 'AutoTokenizer'
def __init__(
self,
vocab_file,
unk_token='<unk>',
bos_token='<s>',
eos_token='</s>',
pad_token='</s>',
sp_model_kwargs: Optional[Dict[str, Any]] = None,
add_bos_token=True,
add_eos_token=False,
decode_with_prefix_space=False,
clean_up_tokenization_spaces=False,
**kwargs,
):
super().__init__(
vocab_file=vocab_file,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
pad_token=pad_token,
sp_model_kwargs=sp_model_kwargs,
add_bos_token=add_bos_token,
add_eos_token=add_eos_token,
decode_with_prefix_space=decode_with_prefix_space,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
**kwargs,
)
self._add_bos_token = add_bos_token
self._add_eos_token = add_eos_token
self.update_post_processor()
self.vocab_file = vocab_file
@property
def can_save_slow_tokenizer(self) -> bool:
return os.path.isfile(self.vocab_file) if self.vocab_file else False
def update_post_processor(self):
"""
Updates the underlying post processor with the current `bos_token` and `eos_token`.
"""
bos = self.bos_token
bos_token_id = self.bos_token_id
if bos is None and self.add_bos_token:
raise ValueError('add_bos_token = True but bos_token = None')
eos = self.eos_token
eos_token_id = self.eos_token_id
if eos is None and self.add_eos_token:
raise ValueError('add_eos_token = True but eos_token = None')
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
special_tokens = []
if self.add_bos_token:
special_tokens.append((bos, bos_token_id))
if self.add_eos_token:
special_tokens.append((eos, eos_token_id))
self._tokenizer.post_processor = processors.TemplateProcessing(
single=single, pair=pair, special_tokens=special_tokens
)
@property
def add_eos_token(self):
return self._add_eos_token
@property
def add_bos_token(self):
return self._add_bos_token
@add_eos_token.setter
def add_eos_token(self, value):
self._add_eos_token = value
self.update_post_processor()
@add_bos_token.setter
def add_bos_token(self, value):
self._add_bos_token = value
self.update_post_processor()
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.'
)
if not os.path.isdir(save_directory):
logger.error(f'Vocabulary path ({save_directory}) should be a directory')
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)