๐Ÿ“•InternVL_2_5_HiCo_R16 โšก

[๐Ÿ“‚ GitHub]
[๐Ÿ“œ Tech Report]

๐Ÿ“ˆ Performance

Model MVBench LongVideoBench VideoMME(w/o sub)
InternVL_2_5_HiCo_R16 - - -

๐Ÿš€ How to use the model

First, you need to install flash attention2 and some other modules. We provide a simple installation example below:

pip install transformers==4.40.1
pip install av
pip install imageio
pip install decord
pip install opencv-python
pip install flash-attn --no-build-isolation

Then you could use our model:

from transformers import AutoModel, AutoTokenizer

# model setting
model_path = 'OpenGVLab/InternVL_2_5_HiCo_R16'

tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModel.from_pretrained(model_path, trust_remote_code=True).half().cuda()
image_processor = model.get_vision_tower().image_processor


# evaluation setting
max_num_frames = 512
generation_config = dict(
    do_sample=False,
    temperature=0.0,
    max_new_tokens=1024,
    top_p=0.1,
    num_beams=1
)

video_path = "your_video.mp4"

# single-turn conversation
question1 = "Describe this video in detail."
output1, chat_history = model.chat(video_path=video_path, tokenizer=tokenizer, user_prompt=question1, return_history=True, max_num_frames=max_num_frames, generation_config=generation_config)

print(output1)

# multi-turn conversation
question2 = "How many people appear in the video?"
output2, chat_history = model.chat(video_path=video_path, tokenizer=tokenizer, user_prompt=question2, chat_history=chat_history, return_history=True, max_num_frames=max_num_frames, generation_config=generation_config)

print(output2)

โœ๏ธ Citation


@article{wang2025internvideo,
  title={InternVideo2.5: Empowering Video MLLMs with Long and Rich Context Modeling},
  author={Wang, Yi and Li, Xinhao and Yan, Ziang and He, Yinan and Yu, Jiashuo and Zeng, Xiangyu and Wang, Chenting and Ma, Changlian and Huang, Haian and Gao, Jianfei and Dou, Min and Chen, Kai and Wang, Wenhai and Qiao, Yu and Wang, Yali and Wang, Limin},
  journal={arXiv preprint arXiv:2501.12386},
  year={2025}
}
Downloads last month
0
Safetensors
Model size
8.08B params
Tensor type
BF16
ยท
Inference API
Inference API (serverless) does not yet support model repos that contain custom code.