|
--- |
|
language: en |
|
license: apache-2.0 |
|
library_name: pytorch |
|
tags: |
|
- deep-reinforcement-learning |
|
- reinforcement-learning |
|
- DI-engine |
|
- TicTacToe-play-with-bot |
|
benchmark_name: OpenAI/Gym/Atari |
|
task_name: TicTacToe-play-with-bot |
|
pipeline_tag: reinforcement-learning |
|
model-index: |
|
- name: SampledAlphaZero |
|
results: |
|
- task: |
|
type: reinforcement-learning |
|
name: reinforcement-learning |
|
dataset: |
|
name: TicTacToe-play-with-bot |
|
type: TicTacToe-play-with-bot |
|
metrics: |
|
- type: mean_reward |
|
value: 0.3 +/- 0.64 |
|
name: mean_reward |
|
--- |
|
|
|
# Play **TicTacToe-play-with-bot** with **SampledAlphaZero** Policy |
|
|
|
## Model Description |
|
<!-- Provide a longer summary of what this model is. --> |
|
|
|
This implementation applies **SampledAlphaZero** to the OpenAI/Gym/Atari **TicTacToe-play-with-bot** environment using [LightZero](https://github.com/opendilab/LightZero) and [DI-engine](https://github.com/opendilab/di-engine). |
|
|
|
**LightZero** is an efficient, easy-to-understand open-source toolkit that merges Monte Carlo Tree Search (MCTS) with Deep Reinforcement Learning (RL), simplifying their integration for developers and researchers. More details are in paper [LightZero: A Unified Benchmark for Monte Carlo Tree Search in General Sequential Decision Scenarios](https://huggingface.co./papers/2310.08348). |
|
|
|
## Model Usage |
|
### Install the Dependencies |
|
<details close> |
|
<summary>(Click for Details)</summary> |
|
|
|
```shell |
|
# install huggingface_ding |
|
git clone https://github.com/opendilab/huggingface_ding.git |
|
pip3 install -e ./huggingface_ding/ |
|
# install environment dependencies if needed |
|
|
|
pip3 install DI-engine[common_env,video] |
|
pip3 install LightZero |
|
|
|
``` |
|
</details> |
|
|
|
### Git Clone from Huggingface and Run the Model |
|
|
|
<details close> |
|
<summary>(Click for Details)</summary> |
|
|
|
```shell |
|
# running with trained model |
|
python3 -u run.py |
|
``` |
|
**run.py** |
|
```python |
|
from lzero.agent import SampledAlphaZeroAgent |
|
from ding.config import Config |
|
from easydict import EasyDict |
|
import torch |
|
|
|
# Pull model from files which are git cloned from huggingface |
|
policy_state_dict = torch.load("pytorch_model.bin", map_location=torch.device("cpu")) |
|
cfg = EasyDict(Config.file_to_dict("policy_config.py").cfg_dict) |
|
# Instantiate the agent |
|
agent = SampledAlphaZeroAgent( |
|
env_id="TicTacToe-play-with-bot", exp_name="TicTacToe-play-with-bot-SampledAlphaZero", cfg=cfg.exp_config, policy_state_dict=policy_state_dict |
|
) |
|
# Continue training |
|
agent.train(step=5000) |
|
# Render the new agent performance |
|
agent.deploy(enable_save_replay=True) |
|
|
|
``` |
|
</details> |
|
|
|
### Run Model by Using Huggingface_ding |
|
|
|
<details close> |
|
<summary>(Click for Details)</summary> |
|
|
|
```shell |
|
# running with trained model |
|
python3 -u run.py |
|
``` |
|
**run.py** |
|
```python |
|
from lzero.agent import SampledAlphaZeroAgent |
|
from huggingface_ding import pull_model_from_hub |
|
|
|
# Pull model from Hugggingface hub |
|
policy_state_dict, cfg = pull_model_from_hub(repo_id="OpenDILabCommunity/TicTacToe-play-with-bot-SampledAlphaZero") |
|
# Instantiate the agent |
|
agent = SampledAlphaZeroAgent( |
|
env_id="TicTacToe-play-with-bot", exp_name="TicTacToe-play-with-bot-SampledAlphaZero", cfg=cfg.exp_config, policy_state_dict=policy_state_dict |
|
) |
|
# Continue training |
|
agent.train(step=5000) |
|
# Render the new agent performance |
|
agent.deploy(enable_save_replay=True) |
|
|
|
``` |
|
</details> |
|
|
|
## Model Training |
|
|
|
### Train the Model and Push to Huggingface_hub |
|
|
|
<details close> |
|
<summary>(Click for Details)</summary> |
|
|
|
```shell |
|
#Training Your Own Agent |
|
python3 -u train.py |
|
``` |
|
**train.py** |
|
```python |
|
from lzero.agent import SampledAlphaZeroAgent |
|
from huggingface_ding import push_model_to_hub |
|
|
|
# Instantiate the agent |
|
agent = SampledAlphaZeroAgent(env_id="TicTacToe-play-with-bot", exp_name="TicTacToe-play-with-bot-SampledAlphaZero") |
|
# Train the agent |
|
return_ = agent.train(step=int(500000)) |
|
# Push model to huggingface hub |
|
push_model_to_hub( |
|
agent=agent.best, |
|
env_name="OpenAI/Gym/Atari", |
|
task_name="TicTacToe-play-with-bot", |
|
algo_name="SampledAlphaZero", |
|
github_repo_url="https://github.com/opendilab/LightZero", |
|
github_doc_model_url=None, |
|
github_doc_env_url=None, |
|
installation_guide=''' |
|
pip3 install DI-engine[common_env,video] |
|
pip3 install LightZero |
|
''', |
|
usage_file_by_git_clone="./sampled_alphazero/tictactoe_play_with_bot_sampled_alphazero_deploy.py", |
|
usage_file_by_huggingface_ding="./sampled_alphazero/tictactoe_play_with_bot_sampled_alphazero_download.py", |
|
train_file="./sampled_alphazero/tictactoe_play_with_bot_sampled_alphazero.py", |
|
repo_id="OpenDILabCommunity/TicTacToe-play-with-bot-SampledAlphaZero", |
|
platform_info="[LightZero](https://github.com/opendilab/LightZero) and [DI-engine](https://github.com/opendilab/di-engine)", |
|
model_description="**LightZero** is an efficient, easy-to-understand open-source toolkit that merges Monte Carlo Tree Search (MCTS) with Deep Reinforcement Learning (RL), simplifying their integration for developers and researchers. More details are in paper [LightZero: A Unified Benchmark for Monte Carlo Tree Search in General Sequential Decision Scenarios](https://huggingface.co./papers/2310.08348).", |
|
create_repo=True |
|
) |
|
|
|
``` |
|
</details> |
|
|
|
**Configuration** |
|
<details close> |
|
<summary>(Click for Details)</summary> |
|
|
|
|
|
```python |
|
exp_config = { |
|
'main_config': { |
|
'exp_name': 'TicTacToe-play-with-bot-SampledAlphaZero', |
|
'seed': 0, |
|
'env': { |
|
'env_id': 'TicTacToe-play-with-bot', |
|
'board_size': 3, |
|
'battle_mode': 'play_with_bot_mode', |
|
'bot_action_type': 'v0', |
|
'channel_last': False, |
|
'collector_env_num': 8, |
|
'evaluator_env_num': 5, |
|
'n_evaluator_episode': 5, |
|
'manager': { |
|
'shared_memory': False |
|
}, |
|
'agent_vs_human': False, |
|
'prob_random_agent': 0, |
|
'prob_expert_agent': 0, |
|
'scale': True, |
|
'alphazero_mcts_ctree': False, |
|
'save_replay_gif': False, |
|
'replay_path_gif': './replay_gif' |
|
}, |
|
'policy': { |
|
'on_policy': False, |
|
'cuda': True, |
|
'multi_gpu': False, |
|
'bp_update_sync': True, |
|
'traj_len_inf': False, |
|
'model': { |
|
'observation_shape': [3, 3, 3], |
|
'action_space_size': 9, |
|
'num_res_blocks': 1, |
|
'num_channels': 16, |
|
'fc_value_layers': [8], |
|
'fc_policy_layers': [8] |
|
}, |
|
'torch_compile': False, |
|
'tensor_float_32': False, |
|
'sampled_algo': False, |
|
'gumbel_algo': False, |
|
'update_per_collect': 50, |
|
'model_update_ratio': 0.1, |
|
'batch_size': 256, |
|
'optim_type': 'Adam', |
|
'learning_rate': 0.003, |
|
'weight_decay': 0.0001, |
|
'momentum': 0.9, |
|
'grad_clip_value': 0.5, |
|
'value_weight': 1.0, |
|
'collector_env_num': 8, |
|
'evaluator_env_num': 5, |
|
'lr_piecewise_constant_decay': False, |
|
'threshold_training_steps_for_final_lr': 500000, |
|
'manual_temperature_decay': False, |
|
'threshold_training_steps_for_final_temperature': 100000, |
|
'fixed_temperature_value': 0.25, |
|
'mcts': { |
|
'num_simulations': 25 |
|
}, |
|
'other': { |
|
'replay_buffer': { |
|
'replay_buffer_size': 1000000, |
|
'save_episode': False |
|
} |
|
}, |
|
'cfg_type': 'AlphaZeroPolicyDict', |
|
'mcts_ctree': False, |
|
'simulation_env_name': 'tictactoe', |
|
'simulation_env_config_type': 'play_with_bot', |
|
'board_size': 3, |
|
'entropy_weight': 0.0, |
|
'n_episode': 8, |
|
'eval_freq': 2000 |
|
}, |
|
'wandb_logger': { |
|
'gradient_logger': False, |
|
'video_logger': False, |
|
'plot_logger': False, |
|
'action_logger': False, |
|
'return_logger': False |
|
} |
|
}, |
|
'create_config': { |
|
'env': { |
|
'type': 'tictactoe', |
|
'import_names': ['zoo.board_games.tictactoe.envs.tictactoe_env'] |
|
}, |
|
'env_manager': { |
|
'type': 'subprocess' |
|
}, |
|
'policy': { |
|
'type': 'alphazero', |
|
'import_names': ['lzero.policy.alphazero'] |
|
}, |
|
'collector': { |
|
'type': 'episode_alphazero', |
|
'import_names': ['lzero.worker.alphazero_collector'] |
|
}, |
|
'evaluator': { |
|
'type': 'alphazero', |
|
'import_names': ['lzero.worker.alphazero_evaluator'] |
|
} |
|
} |
|
} |
|
|
|
``` |
|
</details> |
|
|
|
**Training Procedure** |
|
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> |
|
- **Weights & Biases (wandb):** [monitor link](<TODO>) |
|
|
|
## Model Information |
|
<!-- Provide the basic links for the model. --> |
|
- **Github Repository:** [repo link](https://github.com/opendilab/LightZero) |
|
- **Doc**: [Algorithm link](<TODO>) |
|
- **Configuration:** [config link](https://huggingface.co./OpenDILabCommunity/TicTacToe-play-with-bot-SampledAlphaZero/blob/main/policy_config.py) |
|
- **Demo:** [video](https://huggingface.co./OpenDILabCommunity/TicTacToe-play-with-bot-SampledAlphaZero/blob/main/replay.mp4) |
|
<!-- Provide the size information for the model. --> |
|
- **Parameters total size:** 51.13 KB |
|
- **Last Update Date:** 2024-02-01 |
|
|
|
## Environments |
|
<!-- Address questions around what environment the model is intended to be trained and deployed at, including the necessary information needed to be provided for future users. --> |
|
- **Benchmark:** OpenAI/Gym/Atari |
|
- **Task:** TicTacToe-play-with-bot |
|
- **Gym version:** 0.25.1 |
|
- **DI-engine version:** v0.5.0 |
|
- **PyTorch version:** 2.0.1+cu117 |
|
- **Doc**: [Environments link](<TODO>) |
|
|