metadata
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:557850
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: intfloat/multilingual-e5-small
datasets: []
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: ذكر متوازن بعناية يقف على قدم واحدة بالقرب من منطقة شاطئ المحيط النظيفة
sentences:
- رجل يقدم عرضاً
- هناك رجل بالخارج قرب الشاطئ
- رجل يجلس على أريكه
- source_sentence: رجل يقفز إلى سريره القذر
sentences:
- السرير قذر.
- رجل يضحك أثناء غسيل الملابس
- الرجل على القمر
- source_sentence: الفتيات بالخارج
sentences:
- امرأة تلف الخيط إلى كرات بجانب كومة من الكرات
- فتيان يركبان في جولة متعة
- >-
ثلاث فتيات يقفون سوية في غرفة واحدة تستمع وواحدة تكتب على الحائط
والثالثة تتحدث إليهن
- source_sentence: الرجل يرتدي قميصاً أزرق.
sentences:
- >-
رجل يرتدي قميصاً أزرق يميل إلى الجدار بجانب الطريق مع شاحنة زرقاء وسيارة
حمراء مع الماء في الخلفية.
- كتاب القصص مفتوح
- رجل يرتدي قميص أسود يعزف على الجيتار.
- source_sentence: يجلس شاب ذو شعر أشقر على الحائط يقرأ جريدة بينما تمر امرأة وفتاة شابة.
sentences:
- ذكر شاب ينظر إلى جريدة بينما تمر إمرأتان بجانبه
- رجل يستلقي على وجهه على مقعد في الحديقة.
- الشاب نائم بينما الأم تقود ابنتها إلى الحديقة
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on intfloat/multilingual-e5-small
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 384
type: sts-test-384
metrics:
- type: pearson_cosine
value: 0.7883137447514015
name: Pearson Cosine
- type: spearman_cosine
value: 0.7971624317482785
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7845904338398069
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7939541836133244
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7882887522003604
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7971601260546269
name: Spearman Euclidean
- type: pearson_dot
value: 0.7883137483129774
name: Pearson Dot
- type: spearman_dot
value: 0.7971605875966696
name: Spearman Dot
- type: pearson_max
value: 0.7883137483129774
name: Pearson Max
- type: spearman_max
value: 0.7971624317482785
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 256
type: sts-test-256
metrics:
- type: pearson_cosine
value: 0.7851969391652749
name: Pearson Cosine
- type: spearman_cosine
value: 0.7968026743946358
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7852783784725356
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7935883492889713
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7882018230746569
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7963116553267949
name: Spearman Euclidean
- type: pearson_dot
value: 0.7786421988393841
name: Pearson Dot
- type: spearman_dot
value: 0.7867782644180616
name: Spearman Dot
- type: pearson_max
value: 0.7882018230746569
name: Pearson Max
- type: spearman_max
value: 0.7968026743946358
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 128
type: sts-test-128
metrics:
- type: pearson_cosine
value: 0.7754967709350954
name: Pearson Cosine
- type: spearman_cosine
value: 0.7933453885370457
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7832834632297865
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7907589269176767
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7867583047946054
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7935816990844704
name: Spearman Euclidean
- type: pearson_dot
value: 0.7317253736607925
name: Pearson Dot
- type: spearman_dot
value: 0.7335574962775742
name: Spearman Dot
- type: pearson_max
value: 0.7867583047946054
name: Pearson Max
- type: spearman_max
value: 0.7935816990844704
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 64
type: sts-test-64
metrics:
- type: pearson_cosine
value: 0.7625204599039478
name: Pearson Cosine
- type: spearman_cosine
value: 0.7837078735068292
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7752889433866854
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7790888579029828
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.777961287133872
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7815940757356076
name: Spearman Euclidean
- type: pearson_dot
value: 0.6685094830550401
name: Pearson Dot
- type: spearman_dot
value: 0.6621206899696827
name: Spearman Dot
- type: pearson_max
value: 0.777961287133872
name: Pearson Max
- type: spearman_max
value: 0.7837078735068292
name: Spearman Max
SentenceTransformer based on intfloat/multilingual-e5-small
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small on the Omartificial-Intelligence-Space/arabic-n_li-triplet dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Omartificial-Intelligence-Space/arabic-n_li-triplet
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("Omartificial-Intelligence-Space/E5-Matro")
sentences = [
'يجلس شاب ذو شعر أشقر على الحائط يقرأ جريدة بينما تمر امرأة وفتاة شابة.',
'ذكر شاب ينظر إلى جريدة بينما تمر إمرأتان بجانبه',
'الشاب نائم بينما الأم تقود ابنتها إلى الحديقة',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.7883 |
spearman_cosine |
0.7972 |
pearson_manhattan |
0.7846 |
spearman_manhattan |
0.794 |
pearson_euclidean |
0.7883 |
spearman_euclidean |
0.7972 |
pearson_dot |
0.7883 |
spearman_dot |
0.7972 |
pearson_max |
0.7883 |
spearman_max |
0.7972 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.7852 |
spearman_cosine |
0.7968 |
pearson_manhattan |
0.7853 |
spearman_manhattan |
0.7936 |
pearson_euclidean |
0.7882 |
spearman_euclidean |
0.7963 |
pearson_dot |
0.7786 |
spearman_dot |
0.7868 |
pearson_max |
0.7882 |
spearman_max |
0.7968 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.7755 |
spearman_cosine |
0.7933 |
pearson_manhattan |
0.7833 |
spearman_manhattan |
0.7908 |
pearson_euclidean |
0.7868 |
spearman_euclidean |
0.7936 |
pearson_dot |
0.7317 |
spearman_dot |
0.7336 |
pearson_max |
0.7868 |
spearman_max |
0.7936 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.7625 |
spearman_cosine |
0.7837 |
pearson_manhattan |
0.7753 |
spearman_manhattan |
0.7791 |
pearson_euclidean |
0.778 |
spearman_euclidean |
0.7816 |
pearson_dot |
0.6685 |
spearman_dot |
0.6621 |
pearson_max |
0.778 |
spearman_max |
0.7837 |
Training Details
Training Dataset
Omartificial-Intelligence-Space/arabic-n_li-triplet
- Dataset: Omartificial-Intelligence-Space/arabic-n_li-triplet
- Size: 557,850 training samples
- Columns:
anchor
, positive
, and negative
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
negative |
type |
string |
string |
string |
details |
- min: 5 tokens
- mean: 10.33 tokens
- max: 52 tokens
|
- min: 5 tokens
- mean: 13.21 tokens
- max: 49 tokens
|
- min: 5 tokens
- mean: 15.32 tokens
- max: 53 tokens
|
- Samples:
anchor |
positive |
negative |
شخص على حصان يقفز فوق طائرة معطلة |
شخص في الهواء الطلق، على حصان. |
شخص في مطعم، يطلب عجة. |
أطفال يبتسمون و يلوحون للكاميرا |
هناك أطفال حاضرون |
الاطفال يتجهمون |
صبي يقفز على لوح التزلج في منتصف الجسر الأحمر. |
الفتى يقوم بخدعة التزلج |
الصبي يتزلج على الرصيف |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
384,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Evaluation Dataset
Omartificial-Intelligence-Space/arabic-n_li-triplet
- Dataset: Omartificial-Intelligence-Space/arabic-n_li-triplet
- Size: 6,584 evaluation samples
- Columns:
anchor
, positive
, and negative
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
negative |
type |
string |
string |
string |
details |
- min: 5 tokens
- mean: 21.86 tokens
- max: 105 tokens
|
- min: 4 tokens
- mean: 10.22 tokens
- max: 49 tokens
|
- min: 4 tokens
- mean: 11.2 tokens
- max: 33 tokens
|
- Samples:
anchor |
positive |
negative |
امرأتان يتعانقان بينما يحملان حزمة |
إمرأتان يحملان حزمة |
الرجال يتشاجرون خارج مطعم |
طفلين صغيرين يرتديان قميصاً أزرق، أحدهما يرتدي الرقم 9 والآخر يرتدي الرقم 2 يقفان على خطوات خشبية في الحمام ويغسلان أيديهما في المغسلة. |
طفلين يرتديان قميصاً مرقماً يغسلون أيديهم |
طفلين يرتديان سترة يذهبان إلى المدرسة |
رجل يبيع الدونات لعميل خلال معرض عالمي أقيم في مدينة أنجليس |
رجل يبيع الدونات لعميل |
امرأة تشرب قهوتها في مقهى صغير |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
384,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 32
warmup_ratio
: 0.1
fp16
: True
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 32
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
learning_rate
: 5e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 3
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: True
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
sts-test-128_spearman_cosine |
sts-test-256_spearman_cosine |
sts-test-384_spearman_cosine |
sts-test-64_spearman_cosine |
0.0344 |
200 |
13.1208 |
- |
- |
- |
- |
0.0688 |
400 |
9.1894 |
- |
- |
- |
- |
0.1033 |
600 |
8.0222 |
- |
- |
- |
- |
0.1377 |
800 |
7.2405 |
- |
- |
- |
- |
0.1721 |
1000 |
7.1622 |
- |
- |
- |
- |
0.2065 |
1200 |
6.4282 |
- |
- |
- |
- |
0.2409 |
1400 |
6.0936 |
- |
- |
- |
- |
0.2753 |
1600 |
5.99 |
- |
- |
- |
- |
0.3098 |
1800 |
5.6939 |
- |
- |
- |
- |
0.3442 |
2000 |
5.694 |
- |
- |
- |
- |
0.3786 |
2200 |
5.2366 |
- |
- |
- |
- |
0.4130 |
2400 |
5.2994 |
- |
- |
- |
- |
0.4474 |
2600 |
5.2079 |
- |
- |
- |
- |
0.4818 |
2800 |
5.0532 |
- |
- |
- |
- |
0.5163 |
3000 |
4.9978 |
- |
- |
- |
- |
0.5507 |
3200 |
5.1764 |
- |
- |
- |
- |
0.5851 |
3400 |
5.1315 |
- |
- |
- |
- |
0.6195 |
3600 |
5.0198 |
- |
- |
- |
- |
0.6539 |
3800 |
5.0308 |
- |
- |
- |
- |
0.6883 |
4000 |
5.1631 |
- |
- |
- |
- |
0.7228 |
4200 |
4.7916 |
- |
- |
- |
- |
0.7572 |
4400 |
4.363 |
- |
- |
- |
- |
0.7916 |
4600 |
3.2357 |
- |
- |
- |
- |
0.8260 |
4800 |
2.9915 |
- |
- |
- |
- |
0.8604 |
5000 |
2.8143 |
- |
- |
- |
- |
0.8949 |
5200 |
2.6125 |
- |
- |
- |
- |
0.9293 |
5400 |
2.5493 |
- |
- |
- |
- |
0.9637 |
5600 |
2.4991 |
- |
- |
- |
- |
0.9981 |
5800 |
2.163 |
- |
- |
- |
- |
1.0325 |
6000 |
0.0 |
- |
- |
- |
- |
1.0669 |
6200 |
0.0 |
- |
- |
- |
- |
1.1014 |
6400 |
0.0 |
- |
- |
- |
- |
1.1358 |
6600 |
0.0 |
- |
- |
- |
- |
1.1702 |
6800 |
0.0 |
- |
- |
- |
- |
1.2046 |
7000 |
0.0 |
- |
- |
- |
- |
1.2390 |
7200 |
0.0 |
- |
- |
- |
- |
1.2734 |
7400 |
0.0 |
- |
- |
- |
- |
1.3079 |
7600 |
0.0 |
- |
- |
- |
- |
1.3423 |
7800 |
0.0 |
- |
- |
- |
- |
1.3767 |
8000 |
0.0 |
- |
- |
- |
- |
1.4111 |
8200 |
0.0037 |
- |
- |
- |
- |
1.4455 |
8400 |
0.0372 |
- |
- |
- |
- |
1.4800 |
8600 |
0.0221 |
- |
- |
- |
- |
1.0229 |
8800 |
4.3738 |
- |
- |
- |
- |
1.0573 |
9000 |
6.338 |
- |
- |
- |
- |
1.0917 |
9200 |
6.2223 |
- |
- |
- |
- |
1.1261 |
9400 |
5.8673 |
- |
- |
- |
- |
1.1606 |
9600 |
5.5907 |
- |
- |
- |
- |
1.1950 |
9800 |
5.0307 |
- |
- |
- |
- |
1.2294 |
10000 |
4.9193 |
- |
- |
- |
- |
1.2638 |
10200 |
4.8798 |
- |
- |
- |
- |
1.2982 |
10400 |
4.401 |
- |
- |
- |
- |
1.3326 |
10600 |
4.2705 |
- |
- |
- |
- |
1.3671 |
10800 |
4.3023 |
- |
- |
- |
- |
1.4015 |
11000 |
4.1344 |
- |
- |
- |
- |
1.4359 |
11200 |
4.0464 |
- |
- |
- |
- |
1.4703 |
11400 |
4.0115 |
- |
- |
- |
- |
1.5047 |
11600 |
3.9206 |
- |
- |
- |
- |
1.5391 |
11800 |
4.0106 |
- |
- |
- |
- |
1.5736 |
12000 |
4.1365 |
- |
- |
- |
- |
1.6080 |
12200 |
4.0401 |
- |
- |
- |
- |
1.6424 |
12400 |
4.0602 |
- |
- |
- |
- |
1.6768 |
12600 |
4.076 |
- |
- |
- |
- |
1.7112 |
12800 |
3.97 |
- |
- |
- |
- |
1.7457 |
13000 |
3.7905 |
- |
- |
- |
- |
1.7801 |
13200 |
2.414 |
- |
- |
- |
- |
1.8145 |
13400 |
2.1811 |
- |
- |
- |
- |
1.8489 |
13600 |
2.1183 |
- |
- |
- |
- |
1.8833 |
13800 |
2.0578 |
- |
- |
- |
- |
1.9177 |
14000 |
2.0173 |
- |
- |
- |
- |
1.9522 |
14200 |
2.0093 |
- |
- |
- |
- |
1.9866 |
14400 |
1.9467 |
- |
- |
- |
- |
2.0210 |
14600 |
0.4674 |
- |
- |
- |
- |
2.0554 |
14800 |
0.0 |
- |
- |
- |
- |
2.0898 |
15000 |
0.0 |
- |
- |
- |
- |
2.1242 |
15200 |
0.0 |
- |
- |
- |
- |
2.1587 |
15400 |
0.0 |
- |
- |
- |
- |
2.1931 |
15600 |
0.0 |
- |
- |
- |
- |
2.2275 |
15800 |
0.0 |
- |
- |
- |
- |
2.2619 |
16000 |
0.0 |
- |
- |
- |
- |
2.2963 |
16200 |
0.0 |
- |
- |
- |
- |
2.3308 |
16400 |
0.0 |
- |
- |
- |
- |
2.3652 |
16600 |
0.0 |
- |
- |
- |
- |
2.3996 |
16800 |
0.0 |
- |
- |
- |
- |
2.4340 |
17000 |
0.0 |
- |
- |
- |
- |
2.4684 |
17200 |
0.0256 |
- |
- |
- |
- |
2.0114 |
17400 |
2.4155 |
- |
- |
- |
- |
2.0170 |
17433 |
- |
0.7933 |
0.7968 |
0.7972 |
0.7837 |
Framework Versions
- Python: 3.9.18
- Sentence Transformers: 3.0.1
- Transformers: 4.40.0
- PyTorch: 2.2.2+cu121
- Accelerate: 0.26.1
- Datasets: 2.19.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}