Omartificial-Intelligence-Space's picture
update readme.md
d0361a3 verified
metadata
language:
  - ar
library_name: sentence-transformers
tags:
  - mteb
  - transformers
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:557850
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
model-index:
  - name: Omartificial-Intelligence-Space/Arabert-all-nli-triplet-Matryoshka
    results:
      - dataset:
          config: default
          name: MTEB BIOSSES (default)
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
          split: test
          type: mteb/biosses-sts
        metrics:
          - type: cosine_pearson
            value: 67.88078975738149
          - type: cosine_spearman
            value: 67.36900492799694
          - type: euclidean_pearson
            value: 66.00402957388015
          - type: euclidean_spearman
            value: 65.70270189991112
          - type: main_score
            value: 67.36900492799694
          - type: manhattan_pearson
            value: 66.54937895501651
          - type: manhattan_spearman
            value: 66.12198856207587
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB SICK-R (default)
          revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
          split: test
          type: mteb/sickr-sts
        metrics:
          - type: cosine_pearson
            value: 62.931439439697044
          - type: cosine_spearman
            value: 57.64441663261227
          - type: euclidean_pearson
            value: 61.119408834167835
          - type: euclidean_spearman
            value: 57.42332323654558
          - type: main_score
            value: 57.64441663261227
          - type: manhattan_pearson
            value: 60.692516462749204
          - type: manhattan_spearman
            value: 56.99349446063643
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STS12 (default)
          revision: a0d554a64d88156834ff5ae9920b964011b16384
          split: test
          type: mteb/sts12-sts
        metrics:
          - type: cosine_pearson
            value: 70.42631404785132
          - type: cosine_spearman
            value: 69.67060431422327
          - type: euclidean_pearson
            value: 68.70261457119209
          - type: euclidean_spearman
            value: 68.99597672902992
          - type: main_score
            value: 69.67060431422327
          - type: manhattan_pearson
            value: 67.99048393745159
          - type: manhattan_spearman
            value: 68.1853179140009
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STS13 (default)
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
          split: test
          type: mteb/sts13-sts
        metrics:
          - type: cosine_pearson
            value: 49.46916157874787
          - type: cosine_spearman
            value: 51.95037157769884
          - type: euclidean_pearson
            value: 55.17336596392549
          - type: euclidean_spearman
            value: 54.312304378478835
          - type: main_score
            value: 51.95037157769884
          - type: manhattan_pearson
            value: 55.09060773902408
          - type: manhattan_spearman
            value: 53.96813218977611
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STS14 (default)
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
          split: test
          type: mteb/sts14-sts
        metrics:
          - type: cosine_pearson
            value: 54.37699141667456
          - type: cosine_spearman
            value: 57.36607721958864
          - type: euclidean_pearson
            value: 57.98000825695592
          - type: euclidean_spearman
            value: 59.08844527739818
          - type: main_score
            value: 57.36607721958864
          - type: manhattan_pearson
            value: 57.588062173142106
          - type: manhattan_spearman
            value: 58.35590953779109
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STS15 (default)
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
          split: test
          type: mteb/sts15-sts
        metrics:
          - type: cosine_pearson
            value: 67.37948361289261
          - type: cosine_spearman
            value: 70.0994395240558
          - type: euclidean_pearson
            value: 70.28341277052768
          - type: euclidean_spearman
            value: 70.11050982217422
          - type: main_score
            value: 70.0994395240558
          - type: manhattan_pearson
            value: 70.66000566140171
          - type: manhattan_spearman
            value: 70.41742785288693
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STS16 (default)
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
          split: test
          type: mteb/sts16-sts
        metrics:
          - type: cosine_pearson
            value: 61.559501698409434
          - type: cosine_spearman
            value: 65.04903130808405
          - type: euclidean_pearson
            value: 63.92021058086694
          - type: euclidean_spearman
            value: 64.22673046991633
          - type: main_score
            value: 65.04903130808405
          - type: manhattan_pearson
            value: 63.958100692077956
          - type: manhattan_spearman
            value: 64.15057001708075
        task:
          type: STS
      - dataset:
          config: ar-ar
          name: MTEB STS17 (ar-ar)
          revision: faeb762787bd10488a50c8b5be4a3b82e411949c
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cosine_pearson
            value: 82.35377320218275
          - type: cosine_spearman
            value: 83.15514468203664
          - type: euclidean_pearson
            value: 80.56116685008965
          - type: euclidean_spearman
            value: 82.38252301503367
          - type: main_score
            value: 83.15514468203664
          - type: manhattan_pearson
            value: 80.74794586574093
          - type: manhattan_spearman
            value: 82.54224799581789
        task:
          type: STS
      - dataset:
          config: ar
          name: MTEB STS22 (ar)
          revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cosine_pearson
            value: 48.22154847597003
          - type: cosine_spearman
            value: 58.29235719729918
          - type: euclidean_pearson
            value: 51.54481297728728
          - type: euclidean_spearman
            value: 58.990627664376674
          - type: main_score
            value: 58.29235719729918
          - type: manhattan_pearson
            value: 52.195039627338126
          - type: manhattan_spearman
            value: 59.12018922641005
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STSBenchmark (default)
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
          split: test
          type: mteb/stsbenchmark-sts
        metrics:
          - type: cosine_pearson
            value: 59.50286436994106
          - type: cosine_spearman
            value: 61.592426810014366
          - type: euclidean_pearson
            value: 63.268627193788916
          - type: euclidean_spearman
            value: 63.16239630067321
          - type: main_score
            value: 61.592426810014366
          - type: manhattan_pearson
            value: 62.95949714767757
          - type: manhattan_spearman
            value: 62.687737378385364
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB SummEval (default)
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
          split: test
          type: mteb/summeval
        metrics:
          - type: cosine_pearson
            value: 31.1427099547469
          - type: cosine_spearman
            value: 31.32880594576111
          - type: dot_pearson
            value: 25.98395652985614
          - type: dot_spearman
            value: 25.30831374828529
          - type: main_score
            value: 31.32880594576111
          - type: pearson
            value: 31.1427099547469
          - type: spearman
            value: 31.32880594576111
        task:
          type: Summarization
  - name: SentenceTransformer based on aubmindlab/bert-base-arabertv02
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test 768
          type: sts-test-768
        metrics:
          - type: pearson_cosine
            value: 0.5949906740977448
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.6159750250469712
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.6295622269205102
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.6269654283099967
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.6326526932327604
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.6317081341785673
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.42816790752358297
            name: Pearson Dot
          - type: spearman_dot
            value: 0.4295282086669423
            name: Spearman Dot
          - type: pearson_max
            value: 0.6326526932327604
            name: Pearson Max
          - type: spearman_max
            value: 0.6317081341785673
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test 512
          type: sts-test-512
        metrics:
          - type: pearson_cosine
            value: 0.5846223235167534
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.6064092420664184
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.6287774004727389
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.6263546541183983
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.631267664308041
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.6301778108727977
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.3788565672017437
            name: Pearson Dot
          - type: spearman_dot
            value: 0.37680551461721923
            name: Spearman Dot
          - type: pearson_max
            value: 0.631267664308041
            name: Pearson Max
          - type: spearman_max
            value: 0.6301778108727977
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test 256
          type: sts-test-256
        metrics:
          - type: pearson_cosine
            value: 0.5778623383989389
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.5959667709300495
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.6242980982402613
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.6217473192873829
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.6237908608463304
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.6215304658549996
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.35968442092444003
            name: Pearson Dot
          - type: spearman_dot
            value: 0.35304547874806785
            name: Spearman Dot
          - type: pearson_max
            value: 0.6242980982402613
            name: Pearson Max
          - type: spearman_max
            value: 0.6217473192873829
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test 128
          type: sts-test-128
        metrics:
          - type: pearson_cosine
            value: 0.5830782075122916
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.6022044167653756
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.6151866925343435
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.6121950064533626
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.6162225316000448
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.615301209345362
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.40438461342780957
            name: Pearson Dot
          - type: spearman_dot
            value: 0.40153111017443666
            name: Spearman Dot
          - type: pearson_max
            value: 0.6162225316000448
            name: Pearson Max
          - type: spearman_max
            value: 0.615301209345362
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test 64
          type: sts-test-64
        metrics:
          - type: pearson_cosine
            value: 0.5724838823862283
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.5914127847098
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.6023812283389073
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.5967205030284914
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.6069294574719372
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.6041440553344074
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.36315938245739166
            name: Pearson Dot
          - type: spearman_dot
            value: 0.358512645020771
            name: Spearman Dot
          - type: pearson_max
            value: 0.6069294574719372
            name: Pearson Max
          - type: spearman_max
            value: 0.6041440553344074
            name: Spearman Max
base_model: aubmindlab/bert-base-arabertv02
datasets:
  - Omartificial-Intelligence-Space/Arabic-NLi-Triplet
metrics:
  - pearson_cosine
  - spearman_cosine
  - pearson_manhattan
  - spearman_manhattan
  - pearson_euclidean
  - spearman_euclidean
  - pearson_dot
  - spearman_dot
  - pearson_max
  - spearman_max
widget:
  - source_sentence: ذكر متوازن بعناية يقف على قدم واحدة بالقرب من منطقة شاطئ المحيط النظيفة
    sentences:
      - رجل يقدم عرضاً
      - هناك رجل بالخارج قرب الشاطئ
      - رجل يجلس على أريكه
  - source_sentence: رجل يقفز إلى سريره القذر
    sentences:
      - السرير قذر.
      - رجل يضحك أثناء غسيل الملابس
      - الرجل على القمر
  - source_sentence: الفتيات بالخارج
    sentences:
      - امرأة تلف الخيط إلى كرات بجانب كومة من الكرات
      - فتيان يركبان في جولة متعة
      - >-
        ثلاث فتيات يقفون سوية في غرفة واحدة تستمع وواحدة تكتب على الحائط
        والثالثة تتحدث إليهن
  - source_sentence: الرجل يرتدي قميصاً أزرق.
    sentences:
      - >-
        رجل يرتدي قميصاً أزرق يميل إلى الجدار بجانب الطريق مع شاحنة زرقاء وسيارة
        حمراء مع الماء في الخلفية.
      - كتاب القصص مفتوح
      - رجل يرتدي قميص أسود يعزف على الجيتار.
  - source_sentence: يجلس شاب ذو شعر أشقر على الحائط يقرأ جريدة بينما تمر امرأة وفتاة شابة.
    sentences:
      - ذكر شاب ينظر إلى جريدة بينما تمر إمرأتان بجانبه
      - رجل يستلقي على وجهه على مقعد في الحديقة.
      - الشاب نائم بينما الأم تقود ابنتها إلى الحديقة
pipeline_tag: sentence-similarity
license: apache-2.0

Arabert All NLI Triplet Matryoshka Model

This is a sentence-transformers model finetuned from aubmindlab/bert-base-arabertv02 on the Omartificial-Intelligence-Space/arabic-n_li-triplet dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: aubmindlab/bert-base-arabertv02
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • Omartificial-Intelligence-Space/arabic-n_li-triplet

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Omartificial-Intelligence-Space/Arabic-arabert-all-nli-triplet")
# Run inference
sentences = [
    'يجلس شاب ذو شعر أشقر على الحائط يقرأ جريدة بينما تمر امرأة وفتاة شابة.',
    'ذكر شاب ينظر إلى جريدة بينما تمر إمرأتان بجانبه',
    'الشاب نائم بينما الأم تقود ابنتها إلى الحديقة',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.595
spearman_cosine 0.616
pearson_manhattan 0.6296
spearman_manhattan 0.627
pearson_euclidean 0.6327
spearman_euclidean 0.6317
pearson_dot 0.4282
spearman_dot 0.4295
pearson_max 0.6327
spearman_max 0.6317

Semantic Similarity

Metric Value
pearson_cosine 0.5846
spearman_cosine 0.6064
pearson_manhattan 0.6288
spearman_manhattan 0.6264
pearson_euclidean 0.6313
spearman_euclidean 0.6302
pearson_dot 0.3789
spearman_dot 0.3768
pearson_max 0.6313
spearman_max 0.6302

Semantic Similarity

Metric Value
pearson_cosine 0.5779
spearman_cosine 0.596
pearson_manhattan 0.6243
spearman_manhattan 0.6217
pearson_euclidean 0.6238
spearman_euclidean 0.6215
pearson_dot 0.3597
spearman_dot 0.353
pearson_max 0.6243
spearman_max 0.6217

Semantic Similarity

Metric Value
pearson_cosine 0.5831
spearman_cosine 0.6022
pearson_manhattan 0.6152
spearman_manhattan 0.6122
pearson_euclidean 0.6162
spearman_euclidean 0.6153
pearson_dot 0.4044
spearman_dot 0.4015
pearson_max 0.6162
spearman_max 0.6153

Semantic Similarity

Metric Value
pearson_cosine 0.5725
spearman_cosine 0.5914
pearson_manhattan 0.6024
spearman_manhattan 0.5967
pearson_euclidean 0.6069
spearman_euclidean 0.6041
pearson_dot 0.3632
spearman_dot 0.3585
pearson_max 0.6069
spearman_max 0.6041

Training Details

Training Dataset

Omartificial-Intelligence-Space/arabic-n_li-triplet

  • Dataset: Omartificial-Intelligence-Space/arabic-n_li-triplet
  • Size: 557,850 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 4 tokens
    • mean: 8.02 tokens
    • max: 41 tokens
    • min: 4 tokens
    • mean: 10.03 tokens
    • max: 34 tokens
    • min: 4 tokens
    • mean: 10.72 tokens
    • max: 38 tokens
  • Samples:
    anchor positive negative
    شخص على حصان يقفز فوق طائرة معطلة شخص في الهواء الطلق، على حصان. شخص في مطعم، يطلب عجة.
    أطفال يبتسمون و يلوحون للكاميرا هناك أطفال حاضرون الاطفال يتجهمون
    صبي يقفز على لوح التزلج في منتصف الجسر الأحمر. الفتى يقوم بخدعة التزلج الصبي يتزلج على الرصيف
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Evaluation Dataset

Omartificial-Intelligence-Space/arabic-n_li-triplet

  • Dataset: Omartificial-Intelligence-Space/arabic-n_li-triplet
  • Size: 6,584 evaluation samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 4 tokens
    • mean: 14.87 tokens
    • max: 70 tokens
    • min: 4 tokens
    • mean: 7.54 tokens
    • max: 26 tokens
    • min: 4 tokens
    • mean: 8.14 tokens
    • max: 23 tokens
  • Samples:
    anchor positive negative
    امرأتان يتعانقان بينما يحملان حزمة إمرأتان يحملان حزمة الرجال يتشاجرون خارج مطعم
    طفلين صغيرين يرتديان قميصاً أزرق، أحدهما يرتدي الرقم 9 والآخر يرتدي الرقم 2 يقفان على خطوات خشبية في الحمام ويغسلان أيديهما في المغسلة. طفلين يرتديان قميصاً مرقماً يغسلون أيديهم طفلين يرتديان سترة يذهبان إلى المدرسة
    رجل يبيع الدونات لعميل خلال معرض عالمي أقيم في مدينة أنجليس رجل يبيع الدونات لعميل امرأة تشرب قهوتها في مقهى صغير
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss sts-test-128_spearman_cosine sts-test-256_spearman_cosine sts-test-512_spearman_cosine sts-test-64_spearman_cosine sts-test-768_spearman_cosine
0.0229 200 14.4811 - - - - -
0.0459 400 9.0389 - - - - -
0.0688 600 8.1478 - - - - -
0.0918 800 7.168 - - - - -
0.1147 1000 7.1998 - - - - -
0.1377 1200 6.7985 - - - - -
0.1606 1400 6.3754 - - - - -
0.1835 1600 6.3202 - - - - -
0.2065 1800 5.9186 - - - - -
0.2294 2000 5.9594 - - - - -
0.2524 2200 6.0211 - - - - -
0.2753 2400 5.9984 - - - - -
0.2983 2600 5.8321 - - - - -
0.3212 2800 5.621 - - - - -
0.3442 3000 5.9004 - - - - -
0.3671 3200 5.562 - - - - -
0.3900 3400 5.5125 - - - - -
0.4130 3600 5.4922 - - - - -
0.4359 3800 5.3023 - - - - -
0.4589 4000 5.4376 - - - - -
0.4818 4200 5.1048 - - - - -
0.5048 4400 5.0605 - - - - -
0.5277 4600 4.9985 - - - - -
0.5506 4800 5.2594 - - - - -
0.5736 5000 5.2183 - - - - -
0.5965 5200 5.1621 - - - - -
0.6195 5400 5.166 - - - - -
0.6424 5600 5.2241 - - - - -
0.6654 5800 5.1342 - - - - -
0.6883 6000 5.2267 - - - - -
0.7113 6200 5.1083 - - - - -
0.7342 6400 5.0119 - - - - -
0.7571 6600 4.6471 - - - - -
0.7801 6800 3.6699 - - - - -
0.8030 7000 3.2954 - - - - -
0.8260 7200 3.1039 - - - - -
0.8489 7400 3.001 - - - - -
0.8719 7600 2.8992 - - - - -
0.8948 7800 2.7504 - - - - -
0.9177 8000 2.7891 - - - - -
0.9407 8200 2.7157 - - - - -
0.9636 8400 2.6795 - - - - -
0.9866 8600 2.6278 - - - - -
1.0 8717 - 0.6022 0.5960 0.6064 0.5914 0.6160

Framework Versions

  • Python: 3.9.18
  • Sentence Transformers: 3.0.1
  • Transformers: 4.40.0
  • PyTorch: 2.2.2+cu121
  • Accelerate: 0.26.1
  • Datasets: 2.19.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}

Acknowledgments

The author would like to thank Prince Sultan University for their invaluable support in this project. Their contributions and resources have been instrumental in the development and fine-tuning of these models.

## Citation

If you use the Arabic Matryoshka Embeddings Model, please cite it as follows:

@misc{nacar2024enhancingsemanticsimilarityunderstanding,
      title={Enhancing Semantic Similarity Understanding in Arabic NLP with Nested Embedding Learning}, 
      author={Omer Nacar and Anis Koubaa},
      year={2024},
      eprint={2407.21139},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2407.21139}, 
}