OSainz's picture
OSainz/mdt-ie-re-entity-pair
3ebde74 verified
metadata
license: mit
base_model: xlm-roberta-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
model-index:
  - name: tmp
    results: []

tmp

This model is a fine-tuned version of xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3272
  • Precision: 0.5560
  • Recall: 0.3209
  • F1: 0.4069

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1
0.7083 0.35 500 0.4423 0.2785 0.0529 0.0889
0.4849 0.7 1000 0.4009 0.3623 0.1803 0.2408
0.4021 1.04 1500 0.3621 0.5027 0.2212 0.3072
0.3276 1.39 2000 0.3606 0.4006 0.3077 0.3481
0.2857 1.74 2500 0.3432 0.5073 0.25 0.3349
0.251 2.09 3000 0.3481 0.4431 0.3413 0.3856
0.2184 2.43 3500 0.3309 0.5274 0.3353 0.4100
0.2162 2.78 4000 0.3411 0.4167 0.3726 0.3934

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2