ืžื—ื•ืœืœ ืฉื™ืจื™ื ืžื˜ื•ืคืฉื™ื :)

from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import TextStreamer
import torch


model_id = "Norod78/hebrew_lyrics-gemma2_2b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
)

print(f"model.device = {model.device}")
input_text = "ื›ืชื•ื‘ ืœื™ ืฉื™ืจ ืขืœ ืชืคื•ื— ืื“ืžื” ืขื ื—ืจื“ื” ื—ื‘ืจืชื™ืช"

input_template = tokenizer.apply_chat_template([{"role": "user", "content": input_text}], tokenize=False, add_generation_prompt=True)
input_ids = tokenizer(input_template, return_tensors="pt").to(model.device)
outputs = model.generate(**input_ids, max_new_tokens=256, repetition_penalty=1.05, temperature=0.5, no_repeat_ngram_size = 4, do_sample = True)
decoded_output = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
result = decoded_output.replace("user\n", "ืžืฉืชืžืฉ:\n").replace("model\n", "\nืžื•ื“ืœ:\n")
print("result = ", result)


chat = [
  {"role": "user", "content": input_text},
  {"role": "asistant"}
]
chat_with_template = tokenizer.apply_chat_template(chat, tokenize=False)
inputs = tokenizer(
[
    chat_with_template
], return_tensors = "pt").to(model.device)


text_streamer = TextStreamer(tokenizer)
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens=256 , repetition_penalty=1.1, temperature=0.6, top_p=0.4, top_k=40, do_sample = True)

Downloads last month
99
Safetensors
Model size
2.61B params
Tensor type
BF16
ยท
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for Norod78/hebrew_lyrics-gemma2_2b

Base model

google/gemma-2-2b
Finetuned
(164)
this model
Quantizations
1 model

Datasets used to train Norod78/hebrew_lyrics-gemma2_2b

Space using Norod78/hebrew_lyrics-gemma2_2b 1