|
|
|
|
|
import os |
|
from typing import Any, Dict |
|
|
|
from diffusers import FluxPipeline, FluxTransformer2DModel, AutoencoderKL, TorchAoConfig |
|
from PIL import Image |
|
import torch |
|
from torchao.quantization import quantize_, autoquant, int8_dynamic_activation_int8_weight, int8_dynamic_activation_int4_weight |
|
from huggingface_hub import hf_hub_download |
|
|
|
IS_COMPILE = False |
|
IS_TURBO = False |
|
IS_4BIT = True |
|
|
|
if IS_COMPILE: |
|
import torch._dynamo |
|
torch._dynamo.config.suppress_errors = True |
|
|
|
from huggingface_inference_toolkit.logging import logger |
|
|
|
def load_pipeline_stable(repo_id: str, dtype: torch.dtype) -> Any: |
|
quantization_config = TorchAoConfig("int4dq" if IS_4BIT else "int8dq") |
|
vae = AutoencoderKL.from_pretrained(repo_id, subfolder="vae", torch_dtype=dtype) |
|
pipe = FluxPipeline.from_pretrained(repo_id, vae=vae, torch_dtype=dtype, quantization_config=quantization_config) |
|
pipe.transformer.fuse_qkv_projections() |
|
pipe.vae.fuse_qkv_projections() |
|
pipe.to("cuda") |
|
return pipe |
|
|
|
def load_pipeline_compile(repo_id: str, dtype: torch.dtype) -> Any: |
|
quantization_config = TorchAoConfig("int4dq" if IS_4BIT else "int8dq") |
|
vae = AutoencoderKL.from_pretrained(repo_id, subfolder="vae", torch_dtype=dtype) |
|
pipe = FluxPipeline.from_pretrained(repo_id, vae=vae, torch_dtype=dtype, quantization_config=quantization_config) |
|
pipe.transformer.fuse_qkv_projections() |
|
pipe.vae.fuse_qkv_projections() |
|
pipe.transformer.to(memory_format=torch.channels_last) |
|
pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=False, dynamic=False) |
|
pipe.vae.to(memory_format=torch.channels_last) |
|
pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=False, dynamic=False) |
|
pipe.to("cuda") |
|
return pipe |
|
|
|
def load_pipeline_autoquant(repo_id: str, dtype: torch.dtype) -> Any: |
|
pipe = FluxPipeline.from_pretrained(repo_id, torch_dtype=dtype).to("cuda") |
|
pipe.transformer.fuse_qkv_projections() |
|
pipe.vae.fuse_qkv_projections() |
|
pipe.transformer.to(memory_format=torch.channels_last) |
|
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True) |
|
pipe.vae.to(memory_format=torch.channels_last) |
|
pipe.vae = torch.compile(pipe.vae, mode="max-autotune", fullgraph=True) |
|
pipe.transformer = autoquant(pipe.transformer, error_on_unseen=False) |
|
pipe.vae = autoquant(pipe.vae, error_on_unseen=False) |
|
pipe.to("cuda") |
|
return pipe |
|
|
|
def load_pipeline_turbo(repo_id: str, dtype: torch.dtype) -> Any: |
|
pipe = FluxPipeline.from_pretrained(repo_id, torch_dtype=dtype).to("cuda") |
|
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), adapter_name="hyper-sd") |
|
pipe.set_adapters(["hyper-sd"], adapter_weights=[0.125]) |
|
pipe.fuse_lora() |
|
pipe.transformer.fuse_qkv_projections() |
|
pipe.vae.fuse_qkv_projections() |
|
weight = int8_dynamic_activation_int4_weight() if IS_4BIT else int8_dynamic_activation_int8_weight() |
|
quantize_(pipe.transformer, weight, device="cuda") |
|
quantize_(pipe.vae, weight, device="cuda") |
|
quantize_(pipe.text_encoder_2, weight, device="cuda") |
|
pipe.to("cuda") |
|
return pipe |
|
|
|
def load_pipeline_turbo_compile(repo_id: str, dtype: torch.dtype) -> Any: |
|
pipe = FluxPipeline.from_pretrained(repo_id, torch_dtype=dtype).to("cuda") |
|
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), adapter_name="hyper-sd") |
|
pipe.set_adapters(["hyper-sd"], adapter_weights=[0.125]) |
|
pipe.fuse_lora() |
|
pipe.transformer.fuse_qkv_projections() |
|
pipe.vae.fuse_qkv_projections() |
|
weight = int8_dynamic_activation_int4_weight() if IS_4BIT else int8_dynamic_activation_int8_weight() |
|
quantize_(pipe.transformer, weight, device="cuda") |
|
quantize_(pipe.vae, weight, device="cuda") |
|
quantize_(pipe.text_encoder_2, weight, device="cuda") |
|
pipe.transformer.to(memory_format=torch.channels_last) |
|
pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=False, dynamic=False) |
|
pipe.vae.to(memory_format=torch.channels_last) |
|
pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=False, dynamic=False) |
|
pipe.to("cuda") |
|
return pipe |
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
repo_id = "NoMoreCopyrightOrg/flux-dev-8step" if IS_TURBO else "NoMoreCopyrightOrg/flux-dev" |
|
|
|
dtype = torch.float16 |
|
if IS_COMPILE: load_pipeline_compile(repo_id, dtype) |
|
else: self.pipeline = load_pipeline_stable(repo_id, dtype) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> Image.Image: |
|
logger.info(f"Received incoming request with {data=}") |
|
|
|
if "inputs" in data and isinstance(data["inputs"], str): |
|
prompt = data.pop("inputs") |
|
elif "prompt" in data and isinstance(data["prompt"], str): |
|
prompt = data.pop("prompt") |
|
else: |
|
raise ValueError( |
|
"Provided input body must contain either the key `inputs` or `prompt` with the" |
|
" prompt to use for the image generation, and it needs to be a non-empty string." |
|
) |
|
|
|
parameters = data.pop("parameters", {}) |
|
|
|
num_inference_steps = parameters.get("num_inference_steps", 8 if IS_TURBO else 28) |
|
width = parameters.get("width", 1024) |
|
height = parameters.get("height", 1024) |
|
guidance_scale = parameters.get("guidance_scale", 3.5) |
|
|
|
|
|
seed = parameters.get("seed", 0) |
|
generator = torch.manual_seed(seed) |
|
|
|
return self.pipeline( |
|
prompt, |
|
height=height, |
|
width=width, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
generator=generator, |
|
output_type="pil", |
|
).images[0] |
|
|
|
|
|
|