File size: 6,038 Bytes
419d7f4 b748322 419d7f4 b748322 fb6d062 419d7f4 b748322 419d7f4 b748322 419d7f4 acf2d5f 419d7f4 b748322 419d7f4 b748322 419d7f4 b748322 419d7f4 b748322 9b4d4c0 b748322 9b4d4c0 b748322 2393f58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
# https://github.com/sayakpaul/diffusers-torchao
import os
from typing import Any, Dict
from diffusers import FluxPipeline, FluxTransformer2DModel, AutoencoderKL, TorchAoConfig
from PIL import Image
import torch
from torchao.quantization import quantize_, autoquant, int8_dynamic_activation_int8_weight, int8_dynamic_activation_int4_weight
from huggingface_hub import hf_hub_download
IS_COMPILE = False
IS_TURBO = False
IS_4BIT = True
if IS_COMPILE:
import torch._dynamo
torch._dynamo.config.suppress_errors = True
from huggingface_inference_toolkit.logging import logger
def load_pipeline_stable(repo_id: str, dtype: torch.dtype) -> Any:
quantization_config = TorchAoConfig("int4dq" if IS_4BIT else "int8dq")
vae = AutoencoderKL.from_pretrained(repo_id, subfolder="vae", torch_dtype=dtype)
pipe = FluxPipeline.from_pretrained(repo_id, vae=vae, torch_dtype=dtype, quantization_config=quantization_config)
pipe.transformer.fuse_qkv_projections()
pipe.vae.fuse_qkv_projections()
pipe.to("cuda")
return pipe
def load_pipeline_compile(repo_id: str, dtype: torch.dtype) -> Any:
quantization_config = TorchAoConfig("int4dq" if IS_4BIT else "int8dq")
vae = AutoencoderKL.from_pretrained(repo_id, subfolder="vae", torch_dtype=dtype)
pipe = FluxPipeline.from_pretrained(repo_id, vae=vae, torch_dtype=dtype, quantization_config=quantization_config)
pipe.transformer.fuse_qkv_projections()
pipe.vae.fuse_qkv_projections()
pipe.transformer.to(memory_format=torch.channels_last)
pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=False, dynamic=False)
pipe.vae.to(memory_format=torch.channels_last)
pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=False, dynamic=False)
pipe.to("cuda")
return pipe
def load_pipeline_autoquant(repo_id: str, dtype: torch.dtype) -> Any:
pipe = FluxPipeline.from_pretrained(repo_id, torch_dtype=dtype).to("cuda")
pipe.transformer.fuse_qkv_projections()
pipe.vae.fuse_qkv_projections()
pipe.transformer.to(memory_format=torch.channels_last)
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
pipe.vae.to(memory_format=torch.channels_last)
pipe.vae = torch.compile(pipe.vae, mode="max-autotune", fullgraph=True)
pipe.transformer = autoquant(pipe.transformer, error_on_unseen=False)
pipe.vae = autoquant(pipe.vae, error_on_unseen=False)
pipe.to("cuda")
return pipe
def load_pipeline_turbo(repo_id: str, dtype: torch.dtype) -> Any:
pipe = FluxPipeline.from_pretrained(repo_id, torch_dtype=dtype).to("cuda")
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), adapter_name="hyper-sd")
pipe.set_adapters(["hyper-sd"], adapter_weights=[0.125])
pipe.fuse_lora()
pipe.transformer.fuse_qkv_projections()
pipe.vae.fuse_qkv_projections()
weight = int8_dynamic_activation_int4_weight() if IS_4BIT else int8_dynamic_activation_int8_weight()
quantize_(pipe.transformer, weight, device="cuda")
quantize_(pipe.vae, weight, device="cuda")
quantize_(pipe.text_encoder_2, weight, device="cuda")
pipe.to("cuda")
return pipe
def load_pipeline_turbo_compile(repo_id: str, dtype: torch.dtype) -> Any:
pipe = FluxPipeline.from_pretrained(repo_id, torch_dtype=dtype).to("cuda")
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), adapter_name="hyper-sd")
pipe.set_adapters(["hyper-sd"], adapter_weights=[0.125])
pipe.fuse_lora()
pipe.transformer.fuse_qkv_projections()
pipe.vae.fuse_qkv_projections()
weight = int8_dynamic_activation_int4_weight() if IS_4BIT else int8_dynamic_activation_int8_weight()
quantize_(pipe.transformer, weight, device="cuda")
quantize_(pipe.vae, weight, device="cuda")
quantize_(pipe.text_encoder_2, weight, device="cuda")
pipe.transformer.to(memory_format=torch.channels_last)
pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=False, dynamic=False)
pipe.vae.to(memory_format=torch.channels_last)
pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=False, dynamic=False)
pipe.to("cuda")
return pipe
class EndpointHandler:
def __init__(self, path=""):
repo_id = "NoMoreCopyrightOrg/flux-dev-8step" if IS_TURBO else "NoMoreCopyrightOrg/flux-dev"
#dtype = torch.bfloat16
dtype = torch.float16 # for older nVidia GPUs
if IS_COMPILE: load_pipeline_compile(repo_id, dtype)
else: self.pipeline = load_pipeline_stable(repo_id, dtype)
def __call__(self, data: Dict[str, Any]) -> Image.Image:
logger.info(f"Received incoming request with {data=}")
if "inputs" in data and isinstance(data["inputs"], str):
prompt = data.pop("inputs")
elif "prompt" in data and isinstance(data["prompt"], str):
prompt = data.pop("prompt")
else:
raise ValueError(
"Provided input body must contain either the key `inputs` or `prompt` with the"
" prompt to use for the image generation, and it needs to be a non-empty string."
)
parameters = data.pop("parameters", {})
num_inference_steps = parameters.get("num_inference_steps", 8 if IS_TURBO else 28)
width = parameters.get("width", 1024)
height = parameters.get("height", 1024)
guidance_scale = parameters.get("guidance_scale", 3.5)
# seed generator (seed cannot be provided as is but via a generator)
seed = parameters.get("seed", 0)
generator = torch.manual_seed(seed)
return self.pipeline( # type: ignore
prompt,
height=height,
width=width,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
output_type="pil",
).images[0]
|