metadata
language: vi
tags:
- vi
- vietnamese
- gpt2
- text-generation
- lm
- nlp
datasets:
- oscar
widget:
- text: Việt Nam là quốc gia có
GPT-2
Pretrained model on Vietnamese language using a causal language modeling (CLM) objective. It was introduced in this paper and first released at this page.
How to use the model
import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel
tokenizer = GPT2Tokenizer.from_pretrained('NlpHUST/gpt2-vietnamese')
model = GPT2LMHeadModel.from_pretrained('NlpHUST/gpt2-vietnamese')
text = "Việt Nam là quốc gia có"
input_ids = tokenizer.encode(text, return_tensors='pt')
max_length = 100
sample_outputs = model.generate(input_ids,pad_token_id=tokenizer.eos_token_id,
do_sample=True,
max_length=max_length,
min_length=max_length,
top_k=40,
num_beams=5,
early_stopping=True,
no_repeat_ngram_size=2,
num_return_sequences=3)
for i, sample_output in enumerate(sample_outputs):
print(">> Generated text {}\n\n{}".format(i+1, tokenizer.decode(sample_output.tolist())))
print('\n---')
Model architecture
A 12-layer, 768-hidden-size transformer-based language model.
Training
The model was trained on Vietnamese Oscar dataset (32 GB) to optimize a traditional language modelling objective on v3-8 TPU for around 6 days. It reaches around 13.4 perplexity on a chosen validation set from Oscar.
GPT-2 Finetuning
The following example fine-tunes GPT-2 on WikiText-2. We're using the raw WikiText-2 (no tokens were replaced before the tokenization). The loss here is that of causal language modeling.
The script here .
python run_clm.py \
--model_name_or_path NlpHUST/gpt2-vietnamese \
--dataset_name wikitext \
--dataset_config_name wikitext-2-raw-v1 \
--per_device_train_batch_size 8 \
--per_device_eval_batch_size 8 \
--do_train \
--do_eval \
--output_dir /tmp/test-clm