Edit model card

wmc_v2_swin-tiny-patch4-window7-224_base_wm811k_cls_contra_learning_1017_6_cls

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0632
  • Accuracy: 0.9760
  • Precision: 0.9607
  • Recall: 0.9621
  • F1: 0.9611

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.131 0.1697 100 0.6398 0.7195 0.6527 0.5655 0.5087
0.6353 0.3394 200 0.2183 0.9314 0.8628 0.8571 0.8592
0.5429 0.5091 300 0.1273 0.9594 0.9347 0.8905 0.9073
0.4432 0.6788 400 0.1040 0.9680 0.9322 0.9489 0.9397
0.4109 0.8485 500 0.0998 0.9697 0.9508 0.9442 0.9474
0.3775 1.0182 600 0.1209 0.9573 0.9323 0.9382 0.9326
0.3661 1.1880 700 0.0968 0.9697 0.9313 0.9579 0.9428
0.3609 1.3577 800 0.0879 0.9707 0.9479 0.9524 0.9498
0.3393 1.5274 900 0.0785 0.9734 0.9536 0.9566 0.9547
0.3242 1.6971 1000 0.0773 0.9732 0.9456 0.9626 0.9533
0.3307 1.8668 1100 0.0626 0.9781 0.9631 0.9601 0.9615
0.3325 2.0365 1200 0.0662 0.9767 0.9575 0.9637 0.9603
0.2889 2.2062 1300 0.0609 0.9780 0.9526 0.9673 0.9594
0.2818 2.3759 1400 0.0656 0.9762 0.9566 0.9619 0.9588
0.3038 2.5456 1500 0.0561 0.9795 0.9666 0.9633 0.9647
0.2823 2.7153 1600 0.0610 0.9781 0.9590 0.9668 0.9626
0.2478 2.8850 1700 0.0632 0.9760 0.9607 0.9621 0.9611

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
12
Safetensors
Model size
27.6M params
Tensor type
I64
·
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Niraya666/wmc_v2_swin-tiny-patch4-window7-224_base_wm811k_cls_contra_learning_1017_6_cls

Finetuned
(459)
this model