BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("NickyNicky/bge-base-financial-matryoshka")
sentences = [
'Information on legal proceedings is included in Contact Email PRIOR HISTORY: None PLACEHOLDER FOR ARBITRATION.',
'Where can information about legal proceedings be found in the financial statements?',
'What remaining authorization amount was available for share repurchases as of January 28, 2023?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.71 |
cosine_accuracy@3 |
0.8429 |
cosine_accuracy@5 |
0.8771 |
cosine_accuracy@10 |
0.9143 |
cosine_precision@1 |
0.71 |
cosine_precision@3 |
0.281 |
cosine_precision@5 |
0.1754 |
cosine_precision@10 |
0.0914 |
cosine_recall@1 |
0.71 |
cosine_recall@3 |
0.8429 |
cosine_recall@5 |
0.8771 |
cosine_recall@10 |
0.9143 |
cosine_ndcg@10 |
0.8152 |
cosine_mrr@10 |
0.7832 |
cosine_map@100 |
0.7867 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7029 |
cosine_accuracy@3 |
0.8457 |
cosine_accuracy@5 |
0.88 |
cosine_accuracy@10 |
0.9157 |
cosine_precision@1 |
0.7029 |
cosine_precision@3 |
0.2819 |
cosine_precision@5 |
0.176 |
cosine_precision@10 |
0.0916 |
cosine_recall@1 |
0.7029 |
cosine_recall@3 |
0.8457 |
cosine_recall@5 |
0.88 |
cosine_recall@10 |
0.9157 |
cosine_ndcg@10 |
0.8132 |
cosine_mrr@10 |
0.78 |
cosine_map@100 |
0.7833 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6986 |
cosine_accuracy@3 |
0.8457 |
cosine_accuracy@5 |
0.8786 |
cosine_accuracy@10 |
0.9071 |
cosine_precision@1 |
0.6986 |
cosine_precision@3 |
0.2819 |
cosine_precision@5 |
0.1757 |
cosine_precision@10 |
0.0907 |
cosine_recall@1 |
0.6986 |
cosine_recall@3 |
0.8457 |
cosine_recall@5 |
0.8786 |
cosine_recall@10 |
0.9071 |
cosine_ndcg@10 |
0.8072 |
cosine_mrr@10 |
0.7746 |
cosine_map@100 |
0.7782 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6914 |
cosine_accuracy@3 |
0.8429 |
cosine_accuracy@5 |
0.8714 |
cosine_accuracy@10 |
0.9057 |
cosine_precision@1 |
0.6914 |
cosine_precision@3 |
0.281 |
cosine_precision@5 |
0.1743 |
cosine_precision@10 |
0.0906 |
cosine_recall@1 |
0.6914 |
cosine_recall@3 |
0.8429 |
cosine_recall@5 |
0.8714 |
cosine_recall@10 |
0.9057 |
cosine_ndcg@10 |
0.8053 |
cosine_mrr@10 |
0.7726 |
cosine_map@100 |
0.7764 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6757 |
cosine_accuracy@3 |
0.8114 |
cosine_accuracy@5 |
0.85 |
cosine_accuracy@10 |
0.8843 |
cosine_precision@1 |
0.6757 |
cosine_precision@3 |
0.2705 |
cosine_precision@5 |
0.17 |
cosine_precision@10 |
0.0884 |
cosine_recall@1 |
0.6757 |
cosine_recall@3 |
0.8114 |
cosine_recall@5 |
0.85 |
cosine_recall@10 |
0.8843 |
cosine_ndcg@10 |
0.7836 |
cosine_mrr@10 |
0.7509 |
cosine_map@100 |
0.7558 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 4 tokens
- mean: 47.19 tokens
- max: 512 tokens
|
- min: 7 tokens
- mean: 20.59 tokens
- max: 41 tokens
|
- Samples:
positive |
anchor |
For the year ended December 31, 2023, $305 million was recorded as a distribution against retained earnings for dividends. |
How much in dividends was recorded against retained earnings in 2023? |
In February 2023, we announced a 10% increase in our quarterly cash dividend to $2.09 per share. |
By how much did the company increase its quarterly cash dividend in February 2023? |
Depreciation and amortization totaled $4,856 as recorded in the financial statements. |
How much did depreciation and amortization total to in the financial statements? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 40
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 20
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 40
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 20
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.9114 |
9 |
- |
0.7124 |
0.7361 |
0.7366 |
0.6672 |
0.7443 |
1.0127 |
10 |
2.0952 |
- |
- |
- |
- |
- |
1.9241 |
19 |
- |
0.7437 |
0.7561 |
0.7628 |
0.7172 |
0.7653 |
2.0253 |
20 |
1.1175 |
- |
- |
- |
- |
- |
2.9367 |
29 |
- |
0.7623 |
0.7733 |
0.7694 |
0.7288 |
0.7723 |
3.0380 |
30 |
0.6104 |
- |
- |
- |
- |
- |
3.9494 |
39 |
- |
0.7723 |
0.7746 |
0.7804 |
0.7405 |
0.7789 |
4.0506 |
40 |
0.4106 |
- |
- |
- |
- |
- |
4.9620 |
49 |
- |
0.7777 |
0.7759 |
0.7820 |
0.7475 |
0.7842 |
5.0633 |
50 |
0.314 |
- |
- |
- |
- |
- |
5.9747 |
59 |
- |
0.7802 |
0.7796 |
0.7856 |
0.7548 |
0.7839 |
6.0759 |
60 |
0.2423 |
- |
- |
- |
- |
- |
6.9873 |
69 |
- |
0.7756 |
0.7772 |
0.7834 |
0.7535 |
0.7818 |
7.0886 |
70 |
0.1962 |
- |
- |
- |
- |
- |
8.0 |
79 |
- |
0.7741 |
0.7774 |
0.7841 |
0.7551 |
0.7822 |
8.1013 |
80 |
0.1627 |
- |
- |
- |
- |
- |
8.9114 |
88 |
- |
0.7724 |
0.7752 |
0.7796 |
0.7528 |
0.7816 |
9.1139 |
90 |
0.1379 |
- |
- |
- |
- |
- |
9.9241 |
98 |
- |
0.7691 |
0.7782 |
0.7834 |
0.7559 |
0.7836 |
10.1266 |
100 |
0.1249 |
- |
- |
- |
- |
- |
10.9367 |
108 |
- |
0.7728 |
0.7802 |
0.7831 |
0.7536 |
0.7848 |
11.1392 |
110 |
0.1105 |
- |
- |
- |
- |
- |
11.9494 |
118 |
- |
0.7748 |
0.7785 |
0.7814 |
0.7558 |
0.7851 |
12.1519 |
120 |
0.1147 |
- |
- |
- |
- |
- |
12.9620 |
128 |
- |
0.7756 |
0.7788 |
0.7839 |
0.7550 |
0.7864 |
13.1646 |
130 |
0.098 |
- |
- |
- |
- |
- |
13.9747 |
138 |
- |
0.7767 |
0.7792 |
0.7828 |
0.7557 |
0.7873 |
14.1772 |
140 |
0.0927 |
- |
- |
- |
- |
- |
14.9873 |
148 |
- |
0.7758 |
0.7804 |
0.7847 |
0.7569 |
0.7892 |
15.1899 |
150 |
0.0921 |
- |
- |
- |
- |
- |
16.0 |
158 |
- |
0.7760 |
0.7794 |
0.7831 |
0.7551 |
0.7873 |
16.2025 |
160 |
0.0896 |
- |
- |
- |
- |
- |
16.9114 |
167 |
- |
0.7753 |
0.7799 |
0.7841 |
0.7570 |
0.7888 |
17.2152 |
170 |
0.0881 |
- |
- |
- |
- |
- |
17.9241 |
177 |
- |
0.7763 |
0.7787 |
0.7842 |
0.7561 |
0.7867 |
18.2278 |
180 |
0.0884 |
0.7764 |
0.7782 |
0.7833 |
0.7558 |
0.7867 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.2.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}