image/png

reference-data-model:

  datasets:
    - OpenAssistant/oasst_top1_2023-08-25:
      lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk"
      link: https://huggingface.co./datasets/OpenAssistant/oasst_top1_2023-08-25

  model:
    - Open-Orca/Mistral-7B-OpenOrca
      Link:
        https://huggingface.co./Open-Orca/Mistral-7B-OpenOrca

  100 examples of generating:
    - Link:
      https://huggingface.co./NickyNicky/Mistral-7B-OpenOrca-oasst_top1_2023-08-25-v2/blob/main/output.xlsx

  Activated training with:
    - Link:
        https://huggingface.co./blog/tomaarsen/attention-sinks
        https://github.com/tomaarsen/attention_sinks
        https://arxiv.org/abs/2309.17453

  Version:
    - Link:
        https://huggingface.co./NickyNicky/Mistral-7B-OpenOrca-oasst_top1_2023-08-25-v1
        https://huggingface.co./NickyNicky/Mistral-7B-OpenOrca-oasst_top1_2023-08-25-v3

  Eval model:
    - link:
        https://huggingface.co./datasets/open-llm-leaderboard/details_NickyNicky__Mistral-7B-OpenOrca-oasst_top1_2023-08-25-v2

# attention-sinks
pip install attention_sinks

# flash-attn
!export CUDA_HOME=/usr/local/cuda-11.8
!MAX_JOBS=4 pip install flash-attn --no-build-isolation -qqq
!pip install git+"https://github.com/HazyResearch/flash-attention.git#subdirectory=csrc/rotary" -qqq

Version

import torch, transformers,torchvision
torch.__version__,transformers.__version__, torchvision.__version__
#OUTPUTS: ('2.0.1+cu118', '4.34.0.dev0', '0.15.2+cu118')

How to use


from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    HfArgumentParser,
    TrainingArguments,
    pipeline,
    logging,
    GenerationConfig,
    TextIteratorStreamer,
)

from attention_sinks import AutoModelForCausalLM

import torch

# model_id = 'Open-Orca/Mistral-7B-OpenOrca'
model_id='NickyNicky/Mistral-7B-OpenOrca-oasst_top1_2023-08-25-v2'

model = AutoModelForCausalLM.from_pretrained(model_id,
                                             device_map="auto",
                                             trust_remote_code=True,
                                             torch_dtype=torch.bfloat16,
                                             load_in_4bit=True,
                                             low_cpu_mem_usage= True,

                                             attention_sink_size=4,
                                             attention_sink_window_size=1024, #512, # <- Low for the sake of faster generation
                                             )

max_length=2048
print("max_length",max_length)


tokenizer = AutoTokenizer.from_pretrained(model_id,
                                          # use_fast = False,
                                          max_length=max_length,)

tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = 'right'

#EXAMPLE #1
txt="""<|im_start|>user
I'm looking for an efficient Python script to output prime numbers. Can you help me out? I'm interested in a script that can handle large numbers and output them quickly. Also, it would be great if the script could take a range of numbers as input and output all the prime numbers within that range. Can you generate a script that fits these requirements? Thanks!<|im_end|>
<|im_start|>assistant
"""

#EXAMPLE #2
txt="""<|im_start|>user
Estoy desarrollando una REST API con Nodejs, y estoy tratando de aplicar algún sistema de seguridad, ya sea con tokens o algo similar, me puedes ayudar?<|im_end|>
<|im_start|>assistant
"""

inputs = tokenizer.encode(txt, return_tensors="pt").to("cuda")

generation_config = GenerationConfig(
              max_new_tokens=max_new_tokens,
              temperature=0.7,
              top_p=0.9,
              top_k=len_tokens,
              repetition_penalty=1.11, 
              do_sample=True,
              #  pad_token_id=tokenizer.eos_token_id,
              #  eos_token_id=tokenizer.eos_token_id,
              #  use_cache=True,
              # stopping_criteria= StoppingCriteriaList([stopping_criteria]),
          )
outputs = model.generate(generation_config=generation_config,
                                input_ids=inputs,)
tokenizer.decode(outputs[0], skip_special_tokens=False) #True
Downloads last month
802
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for NickyNicky/Mistral-7B-OpenOrca-oasst_top1_2023-08-25-v2

Adapters
4 models
Quantizations
3 models

Datasets used to train NickyNicky/Mistral-7B-OpenOrca-oasst_top1_2023-08-25-v2