SentenceTransformer based on keepitreal/vietnamese-sbert
This is a sentence-transformers model finetuned from keepitreal/vietnamese-sbert on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: keepitreal/vietnamese-sbert
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("NghiBuine/product-search-model")
# Run inference
sentences = [
'Áo thun từ cotton mềm mại, kiểu dáng đa dạng phù hợp cho nhiều phong cách',
'Áo thun thoải mái',
'Laptop hiệu năng mạnh mẽ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.25 | 0.25 | 0.25 | 0.5 | 0.0 |
cosine_accuracy@3 | 0.75 | 0.75 | 0.75 | 0.75 | 0.5 |
cosine_accuracy@5 | 0.75 | 0.75 | 0.75 | 0.75 | 0.5 |
cosine_accuracy@10 | 1.0 | 1.0 | 0.75 | 1.0 | 0.75 |
cosine_precision@1 | 0.25 | 0.25 | 0.25 | 0.5 | 0.0 |
cosine_precision@3 | 0.25 | 0.25 | 0.25 | 0.25 | 0.1667 |
cosine_precision@5 | 0.15 | 0.15 | 0.15 | 0.15 | 0.1 |
cosine_precision@10 | 0.1 | 0.1 | 0.075 | 0.1 | 0.075 |
cosine_recall@1 | 0.25 | 0.25 | 0.25 | 0.5 | 0.0 |
cosine_recall@3 | 0.75 | 0.75 | 0.75 | 0.75 | 0.5 |
cosine_recall@5 | 0.75 | 0.75 | 0.75 | 0.75 | 0.5 |
cosine_recall@10 | 1.0 | 1.0 | 0.75 | 1.0 | 0.75 |
cosine_ndcg@10 | 0.6377 | 0.608 | 0.5 | 0.7411 | 0.4045 |
cosine_mrr@10 | 0.525 | 0.4861 | 0.4167 | 0.6607 | 0.2917 |
cosine_map@100 | 0.525 | 0.4861 | 0.4375 | 0.6607 | 0.3095 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 33 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 33 samples:
positive anchor type string string details - min: 18 tokens
- mean: 22.82 tokens
- max: 34 tokens
- min: 6 tokens
- mean: 6.97 tokens
- max: 8 tokens
- Samples:
positive anchor Áo Sơ Mi Nam Trắng Classic với chất liệu cotton cao cấp, kiểu dáng lịch lãm
Áo sơ mi tinh tế
Đắc Nhân Tâm của Dale Carnegie với những nguyên tắc xây dựng mối quan hệ hiệu quả
Sách kinh điển về giao tiếp
Nike Air Force 1 với thiết kế logo Swoosh và công nghệ Air-Sole
Giày sneaker cổ điển
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4bf16
: Trueload_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|
1.0 | 1 | 0.6050 | 0.6050 | 0.5 | 0.7083 | 0.5767 |
2.0 | 2 | 0.605 | 0.608 | 0.5 | 0.7411 | 0.4045 |
3.0 | 3 | 0.6377 | 0.6080 | 0.5 | 0.6488 | 0.4045 |
4.0 | 4 | 0.6377 | 0.6080 | 0.5 | 0.7411 | 0.4045 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.0
- Sentence Transformers: 3.3.1
- Transformers: 4.41.2
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 10
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for NghiBuine/product-search-model
Base model
keepitreal/vietnamese-sbertEvaluation results
- Cosine Accuracy@1 on dim 768self-reported0.250
- Cosine Accuracy@3 on dim 768self-reported0.750
- Cosine Accuracy@5 on dim 768self-reported0.750
- Cosine Accuracy@10 on dim 768self-reported1.000
- Cosine Precision@1 on dim 768self-reported0.250
- Cosine Precision@3 on dim 768self-reported0.250
- Cosine Precision@5 on dim 768self-reported0.150
- Cosine Precision@10 on dim 768self-reported0.100
- Cosine Recall@1 on dim 768self-reported0.250
- Cosine Recall@3 on dim 768self-reported0.750