Octopus-v2-gguf-awq / README.md
Davidqian123's picture
Update README.md
e03cb0a verified
metadata
license: cc-by-nc-4.0
base_model: google/gemma-2b
model-index:
  - name: Octopus-V2-2B
    results: []
tags:
  - function calling
  - on-device language model
  - android
inference: false
space: false
spaces: false
language:
  - en

Quantized Octopus V2: On-device language model for super agent

This repo includes two types of quantized models: GGUF and AWQ, for our Octopus V2 model at NexaAIDev/Octopus-v2

nexa-octopus

GGUF Qauntization

To run the models, please download them to your local machine using either git clone or Hugging Face Hub

git clone https://huggingface.co./NexaAIDev/Octopus-v2-gguf-awq

Run with llama.cpp (Recommended)

  1. Clone and compile:
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
# Compile the source code:
make
  1. Execute the Model:

Run the following command in the terminal:

./main -m ./path/to/octopus-v2-Q4_K_M.gguf -n 256 -p "Below is the query from the users, please call the correct function and generate the parameters to call the function.\n\nQuery: Take a selfie for me with front camera\n\nResponse:"

Run with Ollama

Since our models have not been uploaded to the Ollama server, please download the models and manually import them into Ollama by following these steps:

  1. Install Ollama on your local machine. You can also following the guide from Ollama GitHub repository
git clone https://github.com/ollama/ollama.git ollama
  1. Locate the local Ollama directory:
cd ollama
  1. Create a Modelfile in your directory
touch Modelfile
  1. In the Modelfile, include a FROM statement with the path to your local model, and the default parameters:
FROM ./path/to/octopus-v2-Q4_K_M.gguf
  1. Use the following command to add the model to Ollama:
ollama create octopus-v2-Q4_K_M -f Modelfile
  1. Verify that the model has been successfully imported:
ollama ls
  1. Run the mode
ollama run octopus-v2-Q4_K_M "Below is the query from the users, please call the correct function and generate the parameters to call the function.\n\nQuery: Take a selfie for me with front camera\n\nResponse:"

AWQ Quantization

Python example:

from transformers import AutoTokenizer
from awq import AutoAWQForCausalLM
import torch
import time
import numpy as np
def inference(input_text):
    start_time = time.time()
    input_ids = tokenizer(input_text, return_tensors="pt").to('cuda')
    input_length = input_ids["input_ids"].shape[1]
    generation_output = model.generate(
        input_ids["input_ids"],
        do_sample=False,
        max_length=1024
    )
    end_time = time.time()
    # Decode only the generated part
    generated_sequence = generation_output[:, input_length:].tolist()
    res = tokenizer.decode(generated_sequence[0])
    latency = end_time - start_time
    num_output_tokens = len(generated_sequence[0])
    throughput = num_output_tokens / latency
    return {"output": res, "latency": latency, "throughput": throughput}
# Initialize tokenizer and model
model_id = "/path/to/Octopus-v2-AWQ-NexaAIDev"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=False)
model = AutoAWQForCausalLM.from_quantized(model_id, fuse_layers=True,
                                          trust_remote_code=False, safetensors=True)
prompts = ["Below is the query from the users, please call the correct function and generate the parameters to call the function.\n\nQuery: Can you take a photo using the back camera and save it to the default location? \n\nResponse:"]
avg_throughput = []
for prompt in prompts:
    out = inference(prompt)
    avg_throughput.append(out["throughput"])
    print("nexa model result:\n", out["output"])
print("avg throughput:", np.mean(avg_throughput))

Quantized GGUF & AWQ Models Benchmark

Name Quant method Bits Size Response (t/s) Use Cases
Octopus-v2-AWQ AWQ 4 3.00 GB 63.83 fast, high quality, recommended
Octopus-v2-Q2_K.gguf Q2_K 2 1.16 GB 57.81 fast but high loss, not recommended
Octopus-v2-Q3_K.gguf Q3_K 3 1.38 GB 57.81 extremely not recommended
Octopus-v2-Q3_K_S.gguf Q3_K_S 3 1.19 GB 52.13 extremely not recommended
Octopus-v2-Q3_K_M.gguf Q3_K_M 3 1.38 GB 58.67 moderate loss, not very recommended
Octopus-v2-Q3_K_L.gguf Q3_K_L 3 1.47 GB 56.92 not very recommended
Octopus-v2-Q4_0.gguf Q4_0 4 1.55 GB 68.80 moderate speed, recommended
Octopus-v2-Q4_1.gguf Q4_1 4 1.68 GB 68.09 moderate speed, recommended
Octopus-v2-Q4_K.gguf Q4_K 4 1.63 GB 64.70 moderate speed, recommended
Octopus-v2-Q4_K_S.gguf Q4_K_S 4 1.56 GB 62.16 fast and accurate, very recommended
Octopus-v2-Q4_K_M.gguf Q4_K_M 4 1.63 GB 64.74 fast, recommended
Octopus-v2-Q5_0.gguf Q5_0 5 1.80 GB 64.80 fast, recommended
Octopus-v2-Q5_1.gguf Q5_1 5 1.92 GB 63.42 very big, prefer Q4
Octopus-v2-Q5_K.gguf Q5_K 5 1.84 GB 61.28 big, recommended
Octopus-v2-Q5_K_S.gguf Q5_K_S 5 1.80 GB 62.16 big, recommended
Octopus-v2-Q5_K_M.gguf Q5_K_M 5 1.71 GB 61.54 big, recommended
Octopus-v2-Q6_K.gguf Q6_K 6 2.06 GB 55.94 very big, not very recommended
Octopus-v2-Q8_0.gguf Q8_0 8 2.67 GB 56.35 very big, not very recommended
Octopus-v2-f16.gguf f16 16 5.02 GB 36.27 extremely big
Octopus-v2.gguf 10.00 GB

Quantized with llama.cpp

Acknowledgement:
We sincerely thank our community members, Mingyuan, Zoey, Brian, Perry, Qi, David for their extraordinary contributions to this quantization effort.