See axolotl config
axolotl version: 0.6.0
base_model: Delta-Vector/Holland-4B-V1
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: NewEden/CivitAI-SD-Prompts
datasets:
- path: NewEden/CivitAI-Prompts-Sharegpt
type: chat_template
chat_template: chatml
roles_to_train: ["gpt"]
field_messages: conversations
message_field_role: from
message_field_content: value
train_on_eos: turn
dataset_prepared_path:
val_set_size: 0.02
output_dir: ./outputs/out2
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
wandb_project: SDprompter-final
wandb_entity:
wandb_watch:
wandb_name: SDprompter-final
wandb_log_model:
gradient_accumulation_steps: 16
micro_batch_size: 1
num_epochs: 4
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.00001
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.05
evals_per_epoch: 4
saves_per_epoch: 1
debug:
weight_decay: 0.01
special_tokens:
pad_token: <|finetune_right_pad_id|>
eos_token: <|eot_id|>
auto_resume_from_checkpoints: true
outputs/out2
This model is a fine-tuned version of Delta-Vector/Holland-4B-V1 on the NewEden/CivitAI-Prompts-Sharegpt dataset. It achieves the following results on the evaluation set:
- Loss: 3.2782
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 4
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.3357 | 0.0416 | 1 | 4.2492 |
2.9892 | 0.2494 | 6 | 3.6285 |
2.7364 | 0.4987 | 12 | 3.4675 |
2.7076 | 0.7481 | 18 | 3.3928 |
2.757 | 0.9974 | 24 | 3.3484 |
2.5801 | 1.2078 | 30 | 3.3286 |
2.6156 | 1.4571 | 36 | 3.3111 |
2.5308 | 1.7065 | 42 | 3.2999 |
2.5481 | 1.9558 | 48 | 3.2880 |
2.5773 | 2.1662 | 54 | 3.2840 |
2.5269 | 2.4156 | 60 | 3.2822 |
2.5418 | 2.6649 | 66 | 3.2806 |
2.4584 | 2.9143 | 72 | 3.2791 |
2.6515 | 3.1247 | 78 | 3.2789 |
2.4883 | 3.3740 | 84 | 3.2785 |
2.4193 | 3.6234 | 90 | 3.2787 |
2.4337 | 3.8727 | 96 | 3.2782 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 58
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.