MXBD REMEDY Matryoshka_v2
This is a sentence-transformers model finetuned from mixedbread-ai/mxbai-embed-large-v1 on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: mixedbread-ai/mxbai-embed-large-v1
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("NeurologyAI/mxbai-remedy-matryoshka_v3")
# Run inference
sentences = [
"[TextBlock(text='What is critical to avoid misinterpretation of immunohistochemical stainings of glioma tissue?', type='text')]",
'To avoid misinterpretation of immunohistochemical stainings of glioma tissue it is critical to choose antibodies that work well on FFPE material, to optimize and validate tissue pretreatment and staining protocols stringently, and to perform tests alongside appropriate negative and positive controls. For example, ATRX and H3 p.K28me3 immunohistochemistry are sensitive to hypoxia and crush artifacts; in this setting nuclear staining in non-neoplastic cells can serve as a positive internal control.',
'Cerebral MRI should include axial T1-weighted, axial FLAIR, axial diffusion-weighted, axial T2-weighted, post-gadolinium 3D T1-weighted and post-gadolinium 3D FLAIR sequences. Spinal MRI should include post-gadolinium sagittal T1-weighted sequences. Spine sagittal T1-weighted sequences without contrast and sagittal fat-suppression T2-weighted sequences, combined with axial T1-weighted images with contrast of regions of interest, may also be considered.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
,dim_64
,dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9524 |
cosine_accuracy@3 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
cosine_accuracy@5 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
cosine_accuracy@10 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
cosine_precision@1 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9524 |
cosine_precision@3 | 0.3333 | 0.3333 | 0.3333 | 0.3333 | 0.3333 |
cosine_precision@5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
cosine_precision@10 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
cosine_recall@1 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9524 |
cosine_recall@3 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
cosine_recall@5 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
cosine_recall@10 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
cosine_ndcg@10 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9824 |
cosine_mrr@10 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9762 |
cosine_map@100 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9762 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 181 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 181 samples:
anchor positive type string string details - min: 9 tokens
- mean: 41.06 tokens
- max: 77 tokens
- min: 16 tokens
- mean: 53.83 tokens
- max: 239 tokens
- Samples:
anchor positive [TextBlock(text='What is the recommended treatment for patients with recurrent or atypical meningiomas?', type='text')]
Patients with recurrent or atypical meningiomas hould receive fractionated radiotherapy.
[TextBlock(text='What is the recommended treatment for headache in patients with gliomas?', type='text')]
Pain or headache. Corticosteroids (dexamethasone) should be the mainstay of treatment for headache in patients with gliomas. Analgesics and co-analgesics could also be considered in the treatment of headache in patients with gliomas in accordance with the WHO cancer pain ladder. During care in the end-of-life phase, consideration needs to be given to the management of headache with corticosteroids; advantages of corticosteroids (alleviation of symptoms) should be weighed against side-effects (such as delirium).
[TextBlock(text='What is the priority in the current surgical approach to gliomas?', type='text')]
The extent of resection is a prognostic factor and thus, efforts at obtaining complete resections are justified across all glioma entities. In the current surgical approach to gliomas, the prevention of new permanent neurological deficits has higher priority than the extent of resection.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|
1.0 | 1 | 0.9235 | 0.8645 | 0.8624 | 0.7593 | 0.6138 |
2.0 | 2 | 1.0 | 0.9649 | 1.0 | 0.9824 | 0.9473 |
3.0 | 4 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9473 |
1.0 | 1 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9473 |
2.0 | 2 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9824 |
3.0 | 4 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9824 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 1.1.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 71
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for NeurologyAI/mxbai-remedy-matryoshka_v3
Base model
mixedbread-ai/mxbai-embed-large-v1Evaluation results
- Cosine Accuracy@1 on dim 768self-reported1.000
- Cosine Accuracy@3 on dim 768self-reported1.000
- Cosine Accuracy@5 on dim 768self-reported1.000
- Cosine Accuracy@10 on dim 768self-reported1.000
- Cosine Precision@1 on dim 768self-reported1.000
- Cosine Precision@3 on dim 768self-reported0.333
- Cosine Precision@5 on dim 768self-reported0.200
- Cosine Precision@10 on dim 768self-reported0.100
- Cosine Recall@1 on dim 768self-reported1.000
- Cosine Recall@3 on dim 768self-reported1.000