|
{ |
|
"policy_class": { |
|
":type:": "<class 'abc.ABCMeta'>", |
|
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", |
|
"__module__": "stable_baselines3.common.policies", |
|
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", |
|
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5891d29160>", |
|
"__abstractmethods__": "frozenset()", |
|
"_abc_impl": "<_abc_data object at 0x7f5891d2a090>" |
|
}, |
|
"verbose": 1, |
|
"policy_kwargs": { |
|
":type:": "<class 'dict'>", |
|
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", |
|
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", |
|
"optimizer_kwargs": { |
|
"alpha": 0.99, |
|
"eps": 1e-05, |
|
"weight_decay": 0 |
|
} |
|
}, |
|
"num_timesteps": 2000000, |
|
"_total_timesteps": 2000000, |
|
"_num_timesteps_at_start": 0, |
|
"seed": null, |
|
"action_noise": null, |
|
"start_time": 1679883456388321881, |
|
"learning_rate": 0.0001, |
|
"tensorboard_log": null, |
|
"lr_schedule": { |
|
":type:": "<class 'function'>", |
|
":serialized:": "gAWV1QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUS9ob21lL3VidW50dS8ubG9jYWwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUS9ob21lL3VidW50dS8ubG9jYWwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg==" |
|
}, |
|
"_last_obs": { |
|
":type:": "<class 'collections.OrderedDict'>", |
|
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAqGzCPh5+IDyp9Qw/qGzCPh5+IDyp9Qw/qGzCPh5+IDyp9Qw/qGzCPh5+IDyp9Qw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVUKlP+bwdD/AH5O/mejHPxZrbz7Ax5I/3bhjv5N0hD6F9Zu/K+FhP9xSo76Iuce/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACobMI+Hn4gPKn1DD+3fda6dHWCujMDBDyobMI+Hn4gPKn1DD+3fda6dHWCujMDBDyobMI+Hn4gPKn1DD+3fda6dHWCujMDBDyobMI+Hn4gPKn1DD+3fda6dHWCujMDBDyUaA5LBEsGhpRoEnSUUpR1Lg==", |
|
"achieved_goal": "[[0.37973523 0.00979569 0.5506235 ]\n [0.37973523 0.00979569 0.5506235 ]\n [0.37973523 0.00979569 0.5506235 ]\n [0.37973523 0.00979569 0.5506235 ]]", |
|
"desired_goal": "[[ 1.2910868 0.9568008 -1.1494064 ]\n [ 1.5617858 0.23380694 1.1467209 ]\n [-0.88953954 0.2587019 -1.2184302 ]\n [ 0.88234204 -0.31899154 -1.5603495 ]]", |
|
"observation": "[[ 0.37973523 0.00979569 0.5506235 -0.00163644 -0.00099532 0.0080574 ]\n [ 0.37973523 0.00979569 0.5506235 -0.00163644 -0.00099532 0.0080574 ]\n [ 0.37973523 0.00979569 0.5506235 -0.00163644 -0.00099532 0.0080574 ]\n [ 0.37973523 0.00979569 0.5506235 -0.00163644 -0.00099532 0.0080574 ]]" |
|
}, |
|
"_last_episode_starts": { |
|
":type:": "<class 'numpy.ndarray'>", |
|
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg==" |
|
}, |
|
"_last_original_obs": { |
|
":type:": "<class 'collections.OrderedDict'>", |
|
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/ywOvp4AFb6stoo8XsxWvVA7mj0UqIw+WQkMPiuOTz2yg8w8NPEZvNPnDj3N+m0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", |
|
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", |
|
"desired_goal": "[[-0.13884352 -0.14551017 0.01693281]\n [-0.05244099 0.07530844 0.27471983]\n [ 0.13675441 0.05067269 0.02496514]\n [-0.00939589 0.03488905 0.23240204]]", |
|
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]" |
|
}, |
|
"_episode_num": 0, |
|
"use_sde": false, |
|
"sde_sample_freq": -1, |
|
"_current_progress_remaining": 0.0, |
|
"_stats_window_size": 100, |
|
"ep_info_buffer": { |
|
":type:": "<class 'collections.deque'>", |
|
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/G1PkNju3L+UhpRSlIwBbJRLMowBdJRHQLbjxldkauR1fZQoaAZoCWgPQwjj3ZGx2vzdv5SGlFKUaBVLMmgWR0C246VwPy08dX2UKGgGaAloD0MIJAnCFVCoy7+UhpRSlGgVSzJoFkdAtuOEU7CBPXV9lChoBmgJaA9DCEa28/3UeNG/lIaUUpRoFUsyaBZHQLbjZLdN34d1fZQoaAZoCWgPQwiiC+pb5nTYv5SGlFKUaBVLMmgWR0C25KsENe+mdX2UKGgGaAloD0MI3uaNk8I84b+UhpRSlGgVSzJoFkdAtuSKHYYixHV9lChoBmgJaA9DCLqfU5CfDeC/lIaUUpRoFUsyaBZHQLbkaQ+lj3F1fZQoaAZoCWgPQwjpCyHn/X+4v5SGlFKUaBVLMmgWR0C25EmLP2PDdX2UKGgGaAloD0MIPwEUI0vm2b+UhpRSlGgVSzJoFkdAtuWbdYW+G3V9lChoBmgJaA9DCHAmpgux+ta/lIaUUpRoFUsyaBZHQLbleophF3J1fZQoaAZoCWgPQwgTSIld29vTv5SGlFKUaBVLMmgWR0C25Vl3+uNhdX2UKGgGaAloD0MI9S7ej9sv0r+UhpRSlGgVSzJoFkdAtuU557gKnnV9lChoBmgJaA9DCI9SCU/o9de/lIaUUpRoFUsyaBZHQLbmjF+d9Ul1fZQoaAZoCWgPQwifH0YIjzbQv5SGlFKUaBVLMmgWR0C25muRkmQbdX2UKGgGaAloD0MIKpFEL6NY2r+UhpRSlGgVSzJoFkdAtuZKkfs/p3V9lChoBmgJaA9DCDmYTYBh+dW/lIaUUpRoFUsyaBZHQLbmKxkupS91fZQoaAZoCWgPQwhruTMTDOfQv5SGlFKUaBVLMmgWR0C254D/+85CdX2UKGgGaAloD0MIaRzqd2Fr1r+UhpRSlGgVSzJoFkdAtudgAwPAf3V9lChoBmgJaA9DCOvFUE60q9y/lIaUUpRoFUsyaBZHQLbnPvSMLnd1fZQoaAZoCWgPQwhpGhTNA1jUv5SGlFKUaBVLMmgWR0C25x9mcvugdX2UKGgGaAloD0MIJSAm4UIe0r+UhpRSlGgVSzJoFkdAtug3sjVx0nV9lChoBmgJaA9DCKbtX1lpUuG/lIaUUpRoFUsyaBZHQLboFl90A951fZQoaAZoCWgPQwgUXRd+cD7Zv5SGlFKUaBVLMmgWR0C25/TbrTpgdX2UKGgGaAloD0MI+imOA6+Wzb+UhpRSlGgVSzJoFkdAtufU2kzoEHV9lChoBmgJaA9DCMU3FD5bB9K/lIaUUpRoFUsyaBZHQLbowqo60Y11fZQoaAZoCWgPQwgX1LfM6bLYv5SGlFKUaBVLMmgWR0C26KFKK509dX2UKGgGaAloD0MI0qjAyTZw0r+UhpRSlGgVSzJoFkdAtuh/vRZ2ZHV9lChoBmgJaA9DCH7/5sWJr9u/lIaUUpRoFUsyaBZHQLboX8tf5UN1fZQoaAZoCWgPQwjeIFor2hzYv5SGlFKUaBVLMmgWR0C26U97BwdbdX2UKGgGaAloD0MI1xael4qN2L+UhpRSlGgVSzJoFkdAtukuOU+s5nV9lChoBmgJaA9DCHvdIjDWN9m/lIaUUpRoFUsyaBZHQLbpDLehwl11fZQoaAZoCWgPQwgPnZ53Y0Hev5SGlFKUaBVLMmgWR0C26Oyq+8GtdX2UKGgGaAloD0MI9+RhodY007+UhpRSlGgVSzJoFkdAtunYKa5PM3V9lChoBmgJaA9DCOoHdZFCWcS/lIaUUpRoFUsyaBZHQLbpttNBWxR1fZQoaAZoCWgPQwjpX5LKFHPRv5SGlFKUaBVLMmgWR0C26ZVJcxCZdX2UKGgGaAloD0MIOpUMAFVc4b+UhpRSlGgVSzJoFkdAtul1VFQVK3V9lChoBmgJaA9DCO/Lme0KfdO/lIaUUpRoFUsyaBZHQLbqZiXY1511fZQoaAZoCWgPQwikGCDRBIrTv5SGlFKUaBVLMmgWR0C26kTZHuqndX2UKGgGaAloD0MIP3RBfcucxL+UhpRSlGgVSzJoFkdAtuojWhAWznV9lChoBmgJaA9DCH9skh/xK9q/lIaUUpRoFUsyaBZHQLbqA1GLDQ91fZQoaAZoCWgPQwjsouiBj0Hjv5SGlFKUaBVLMmgWR0C26v7G7z06dX2UKGgGaAloD0MIgV1NnrKa07+UhpRSlGgVSzJoFkdAturdfw7T2HV9lChoBmgJaA9DCN0MN+Dzw9a/lIaUUpRoFUsyaBZHQLbqu/y5I6N1fZQoaAZoCWgPQwiwBFJi1/bav5SGlFKUaBVLMmgWR0C26pv/WDpUdX2UKGgGaAloD0MItoMR+wRQ1r+UhpRSlGgVSzJoFkdAtuuMZvUBn3V9lChoBmgJaA9DCGMraFpiZca/lIaUUpRoFUsyaBZHQLbraxY7q6h1fZQoaAZoCWgPQwjZQpCDEmbRv5SGlFKUaBVLMmgWR0C260mRzRx+dX2UKGgGaAloD0MInnsPlxx307+UhpRSlGgVSzJoFkdAtuspj+aScXV9lChoBmgJaA9DCIIavoV1Y+C/lIaUUpRoFUsyaBZHQLbsF36hxo91fZQoaAZoCWgPQwhYrOEi93TYv5SGlFKUaBVLMmgWR0C26/Y3eenRdX2UKGgGaAloD0MIJnDrbp7qyr+UhpRSlGgVSzJoFkdAtuvUscyWRnV9lChoBmgJaA9DCG04LA38qNq/lIaUUpRoFUsyaBZHQLbrtLIgeRx1fZQoaAZoCWgPQwjHZ7J/ngbQv5SGlFKUaBVLMmgWR0C27KLb5/LDdX2UKGgGaAloD0MIofKv5ZVr4r+UhpRSlGgVSzJoFkdAtuyBjFyaNXV9lChoBmgJaA9DCAr2X+emzdm/lIaUUpRoFUsyaBZHQLbsX/qPfbd1fZQoaAZoCWgPQwgYBcHj27vWv5SGlFKUaBVLMmgWR0C27EAAIY3vdX2UKGgGaAloD0MIY9AJoYMuxb+UhpRSlGgVSzJoFkdAtu0z4Glhw3V9lChoBmgJaA9DCCgNNQpJZtO/lIaUUpRoFUsyaBZHQLbtEpQDV6N1fZQoaAZoCWgPQwieKAmJtI3Fv5SGlFKUaBVLMmgWR0C27PFlPJq7dX2UKGgGaAloD0MIbApkdha927+UhpRSlGgVSzJoFkdAtuzR3GGVRnV9lChoBmgJaA9DCDboS29/Lsq/lIaUUpRoFUsyaBZHQLbtwYB/7SB1fZQoaAZoCWgPQwjAJJUp5iDgv5SGlFKUaBVLMmgWR0C27aAxN7BwdX2UKGgGaAloD0MI3+LhPQeW1b+UhpRSlGgVSzJoFkdAtu1+sNlRQHV9lChoBmgJaA9DCEEN38K68de/lIaUUpRoFUsyaBZHQLbtXq9XcQB1fZQoaAZoCWgPQwjTodPzbizYv5SGlFKUaBVLMmgWR0C27kx37k4ndX2UKGgGaAloD0MII0kQroBC1b+UhpRSlGgVSzJoFkdAtu4rMV1wHnV9lChoBmgJaA9DCMnGgy12+9i/lIaUUpRoFUsyaBZHQLbuCbj94u91fZQoaAZoCWgPQwjKxK2CGOjZv5SGlFKUaBVLMmgWR0C27enQUpNLdX2UKGgGaAloD0MIFEAxsmSOzb+UhpRSlGgVSzJoFkdAtu7WenQ6ZHV9lChoBmgJaA9DCJVE9kGWBdu/lIaUUpRoFUsyaBZHQLbutZkkKNR1fZQoaAZoCWgPQwgM6lvmdFnWv5SGlFKUaBVLMmgWR0C27pR/3FkydX2UKGgGaAloD0MIgJpattYX0r+UhpRSlGgVSzJoFkdAtu50hcJMQHV9lChoBmgJaA9DCAKfH0YIj+a/lIaUUpRoFUsyaBZHQLbvdgRbr1N1fZQoaAZoCWgPQwgw1cxaCkjav5SGlFKUaBVLMmgWR0C271SqEOAidX2UKGgGaAloD0MI0QfL2NDNyr+UhpRSlGgVSzJoFkdAtu8zMqz7dnV9lChoBmgJaA9DCPDBa5c2HNi/lIaUUpRoFUsyaBZHQLbvEzBAOax1fZQoaAZoCWgPQwiCyCJNvAPOv5SGlFKUaBVLMmgWR0C27/63mV7hdX2UKGgGaAloD0MIelImNbQB2L+UhpRSlGgVSzJoFkdAtu/dbNbC8HV9lChoBmgJaA9DCM+G/DOD+M6/lIaUUpRoFUsyaBZHQLbvu/JNj9Z1fZQoaAZoCWgPQwjcn4uGjEfNv5SGlFKUaBVLMmgWR0C275vzOHFhdX2UKGgGaAloD0MIGYwRiULLyL+UhpRSlGgVSzJoFkdAtvCQnPVurXV9lChoBmgJaA9DCBoyHqUSnt2/lIaUUpRoFUsyaBZHQLbwb5GBnSR1fZQoaAZoCWgPQwgsLSP1nsrQv5SGlFKUaBVLMmgWR0C28E4PCl7/dX2UKGgGaAloD0MILH3ogvqW1L+UhpRSlGgVSzJoFkdAtvAuEL6UJXV9lChoBmgJaA9DCMoa9RCN7tS/lIaUUpRoFUsyaBZHQLbxHGdI5HV1fZQoaAZoCWgPQwh+i06WWm/iv5SGlFKUaBVLMmgWR0C28PsSPEKmdX2UKGgGaAloD0MITUwXYvVH0b+UhpRSlGgVSzJoFkdAtvDZi+cpb3V9lChoBmgJaA9DCF95kJ4ih9m/lIaUUpRoFUsyaBZHQLbwuX18LKF1fZQoaAZoCWgPQwgu5Xyx9+Lbv5SGlFKUaBVLMmgWR0C28aXY+Sr6dX2UKGgGaAloD0MI/oFy275H2b+UhpRSlGgVSzJoFkdAtvGEikfs/3V9lChoBmgJaA9DCIBjz57L1N6/lIaUUpRoFUsyaBZHQLbxYvrWy1N1fZQoaAZoCWgPQwg4ukp319nXv5SGlFKUaBVLMmgWR0C28UL961LKdX2UKGgGaAloD0MIMVwdAHFXz7+UhpRSlGgVSzJoFkdAtvJggwGnoHV9lChoBmgJaA9DCIKo+wCkNtS/lIaUUpRoFUsyaBZHQLbyP5Dqnm91fZQoaAZoCWgPQwjO/kC5bd/Wv5SGlFKUaBVLMmgWR0C28h5qdpZfdX2UKGgGaAloD0MI+fVDbLBw1L+UhpRSlGgVSzJoFkdAtvH+1WsBAHV9lChoBmgJaA9DCAMjL2tigce/lIaUUpRoFUsyaBZHQLbzR4OMERt1fZQoaAZoCWgPQwizBu+rcqHZv5SGlFKUaBVLMmgWR0C28yaZ+hGpdX2UKGgGaAloD0MIlx5N9WT+z7+UhpRSlGgVSzJoFkdAtvMFjslb/3V9lChoBmgJaA9DCLoxPWGJB9i/lIaUUpRoFUsyaBZHQLby5gDRtxd1ZS4=" |
|
}, |
|
"ep_success_buffer": { |
|
":type:": "<class 'collections.deque'>", |
|
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg==" |
|
}, |
|
"_n_updates": 100000, |
|
"n_steps": 5, |
|
"gamma": 0.99, |
|
"gae_lambda": 1.0, |
|
"ent_coef": 0.0, |
|
"vf_coef": 0.5, |
|
"max_grad_norm": 0.5, |
|
"normalize_advantage": false, |
|
"observation_space": { |
|
":type:": "<class 'gym.spaces.dict.Dict'>", |
|
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", |
|
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", |
|
"_shape": null, |
|
"dtype": null, |
|
"_np_random": null |
|
}, |
|
"action_space": { |
|
":type:": "<class 'gym.spaces.box.Box'>", |
|
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", |
|
"dtype": "float32", |
|
"_shape": [ |
|
3 |
|
], |
|
"low": "[-1. -1. -1.]", |
|
"high": "[1. 1. 1.]", |
|
"bounded_below": "[ True True True]", |
|
"bounded_above": "[ True True True]", |
|
"_np_random": null |
|
}, |
|
"n_envs": 4 |
|
} |