NathanS-HuggingFace commited on
Commit
185d27c
·
1 Parent(s): ee1774d

Initial commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -30.50 +/- 6.55
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -2.54 +/- 0.47
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1e8c894026c30fdfa3bb3980f5ac4d983618c94e502dd2f0d938ca497b696c5
3
+ size 108085
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5891d29160>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f5891d2a090>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 2000000,
23
+ "_total_timesteps": 2000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1679883456388321881,
28
+ "learning_rate": 0.0001,
29
+ "tensorboard_log": null,
30
+ "lr_schedule": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWV1QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUS9ob21lL3VidW50dS8ubG9jYWwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUS9ob21lL3VidW50dS8ubG9jYWwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
33
+ },
34
+ "_last_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAqGzCPh5+IDyp9Qw/qGzCPh5+IDyp9Qw/qGzCPh5+IDyp9Qw/qGzCPh5+IDyp9Qw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVUKlP+bwdD/AH5O/mejHPxZrbz7Ax5I/3bhjv5N0hD6F9Zu/K+FhP9xSo76Iuce/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACobMI+Hn4gPKn1DD+3fda6dHWCujMDBDyobMI+Hn4gPKn1DD+3fda6dHWCujMDBDyobMI+Hn4gPKn1DD+3fda6dHWCujMDBDyobMI+Hn4gPKn1DD+3fda6dHWCujMDBDyUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[0.37973523 0.00979569 0.5506235 ]\n [0.37973523 0.00979569 0.5506235 ]\n [0.37973523 0.00979569 0.5506235 ]\n [0.37973523 0.00979569 0.5506235 ]]",
38
+ "desired_goal": "[[ 1.2910868 0.9568008 -1.1494064 ]\n [ 1.5617858 0.23380694 1.1467209 ]\n [-0.88953954 0.2587019 -1.2184302 ]\n [ 0.88234204 -0.31899154 -1.5603495 ]]",
39
+ "observation": "[[ 0.37973523 0.00979569 0.5506235 -0.00163644 -0.00099532 0.0080574 ]\n [ 0.37973523 0.00979569 0.5506235 -0.00163644 -0.00099532 0.0080574 ]\n [ 0.37973523 0.00979569 0.5506235 -0.00163644 -0.00099532 0.0080574 ]\n [ 0.37973523 0.00979569 0.5506235 -0.00163644 -0.00099532 0.0080574 ]]"
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/ywOvp4AFb6stoo8XsxWvVA7mj0UqIw+WQkMPiuOTz2yg8w8NPEZvNPnDj3N+m0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[-0.13884352 -0.14551017 0.01693281]\n [-0.05244099 0.07530844 0.27471983]\n [ 0.13675441 0.05067269 0.02496514]\n [-0.00939589 0.03488905 0.23240204]]",
50
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
+ },
52
+ "_episode_num": 0,
53
+ "use_sde": false,
54
+ "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.0,
56
+ "_stats_window_size": 100,
57
+ "ep_info_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/G1PkNju3L+UhpRSlIwBbJRLMowBdJRHQLbjxldkauR1fZQoaAZoCWgPQwjj3ZGx2vzdv5SGlFKUaBVLMmgWR0C246VwPy08dX2UKGgGaAloD0MIJAnCFVCoy7+UhpRSlGgVSzJoFkdAtuOEU7CBPXV9lChoBmgJaA9DCEa28/3UeNG/lIaUUpRoFUsyaBZHQLbjZLdN34d1fZQoaAZoCWgPQwiiC+pb5nTYv5SGlFKUaBVLMmgWR0C25KsENe+mdX2UKGgGaAloD0MI3uaNk8I84b+UhpRSlGgVSzJoFkdAtuSKHYYixHV9lChoBmgJaA9DCLqfU5CfDeC/lIaUUpRoFUsyaBZHQLbkaQ+lj3F1fZQoaAZoCWgPQwjpCyHn/X+4v5SGlFKUaBVLMmgWR0C25EmLP2PDdX2UKGgGaAloD0MIPwEUI0vm2b+UhpRSlGgVSzJoFkdAtuWbdYW+G3V9lChoBmgJaA9DCHAmpgux+ta/lIaUUpRoFUsyaBZHQLbleophF3J1fZQoaAZoCWgPQwgTSIld29vTv5SGlFKUaBVLMmgWR0C25Vl3+uNhdX2UKGgGaAloD0MI9S7ej9sv0r+UhpRSlGgVSzJoFkdAtuU557gKnnV9lChoBmgJaA9DCI9SCU/o9de/lIaUUpRoFUsyaBZHQLbmjF+d9Ul1fZQoaAZoCWgPQwifH0YIjzbQv5SGlFKUaBVLMmgWR0C25muRkmQbdX2UKGgGaAloD0MIKpFEL6NY2r+UhpRSlGgVSzJoFkdAtuZKkfs/p3V9lChoBmgJaA9DCDmYTYBh+dW/lIaUUpRoFUsyaBZHQLbmKxkupS91fZQoaAZoCWgPQwhruTMTDOfQv5SGlFKUaBVLMmgWR0C254D/+85CdX2UKGgGaAloD0MIaRzqd2Fr1r+UhpRSlGgVSzJoFkdAtudgAwPAf3V9lChoBmgJaA9DCOvFUE60q9y/lIaUUpRoFUsyaBZHQLbnPvSMLnd1fZQoaAZoCWgPQwhpGhTNA1jUv5SGlFKUaBVLMmgWR0C25x9mcvugdX2UKGgGaAloD0MIJSAm4UIe0r+UhpRSlGgVSzJoFkdAtug3sjVx0nV9lChoBmgJaA9DCKbtX1lpUuG/lIaUUpRoFUsyaBZHQLboFl90A951fZQoaAZoCWgPQwgUXRd+cD7Zv5SGlFKUaBVLMmgWR0C25/TbrTpgdX2UKGgGaAloD0MI+imOA6+Wzb+UhpRSlGgVSzJoFkdAtufU2kzoEHV9lChoBmgJaA9DCMU3FD5bB9K/lIaUUpRoFUsyaBZHQLbowqo60Y11fZQoaAZoCWgPQwgX1LfM6bLYv5SGlFKUaBVLMmgWR0C26KFKK509dX2UKGgGaAloD0MI0qjAyTZw0r+UhpRSlGgVSzJoFkdAtuh/vRZ2ZHV9lChoBmgJaA9DCH7/5sWJr9u/lIaUUpRoFUsyaBZHQLboX8tf5UN1fZQoaAZoCWgPQwjeIFor2hzYv5SGlFKUaBVLMmgWR0C26U97BwdbdX2UKGgGaAloD0MI1xael4qN2L+UhpRSlGgVSzJoFkdAtukuOU+s5nV9lChoBmgJaA9DCHvdIjDWN9m/lIaUUpRoFUsyaBZHQLbpDLehwl11fZQoaAZoCWgPQwgPnZ53Y0Hev5SGlFKUaBVLMmgWR0C26Oyq+8GtdX2UKGgGaAloD0MI9+RhodY007+UhpRSlGgVSzJoFkdAtunYKa5PM3V9lChoBmgJaA9DCOoHdZFCWcS/lIaUUpRoFUsyaBZHQLbpttNBWxR1fZQoaAZoCWgPQwjpX5LKFHPRv5SGlFKUaBVLMmgWR0C26ZVJcxCZdX2UKGgGaAloD0MIOpUMAFVc4b+UhpRSlGgVSzJoFkdAtul1VFQVK3V9lChoBmgJaA9DCO/Lme0KfdO/lIaUUpRoFUsyaBZHQLbqZiXY1511fZQoaAZoCWgPQwikGCDRBIrTv5SGlFKUaBVLMmgWR0C26kTZHuqndX2UKGgGaAloD0MIP3RBfcucxL+UhpRSlGgVSzJoFkdAtuojWhAWznV9lChoBmgJaA9DCH9skh/xK9q/lIaUUpRoFUsyaBZHQLbqA1GLDQ91fZQoaAZoCWgPQwjsouiBj0Hjv5SGlFKUaBVLMmgWR0C26v7G7z06dX2UKGgGaAloD0MIgV1NnrKa07+UhpRSlGgVSzJoFkdAturdfw7T2HV9lChoBmgJaA9DCN0MN+Dzw9a/lIaUUpRoFUsyaBZHQLbqu/y5I6N1fZQoaAZoCWgPQwiwBFJi1/bav5SGlFKUaBVLMmgWR0C26pv/WDpUdX2UKGgGaAloD0MItoMR+wRQ1r+UhpRSlGgVSzJoFkdAtuuMZvUBn3V9lChoBmgJaA9DCGMraFpiZca/lIaUUpRoFUsyaBZHQLbraxY7q6h1fZQoaAZoCWgPQwjZQpCDEmbRv5SGlFKUaBVLMmgWR0C260mRzRx+dX2UKGgGaAloD0MInnsPlxx307+UhpRSlGgVSzJoFkdAtuspj+aScXV9lChoBmgJaA9DCIIavoV1Y+C/lIaUUpRoFUsyaBZHQLbsF36hxo91fZQoaAZoCWgPQwhYrOEi93TYv5SGlFKUaBVLMmgWR0C26/Y3eenRdX2UKGgGaAloD0MIJnDrbp7qyr+UhpRSlGgVSzJoFkdAtuvUscyWRnV9lChoBmgJaA9DCG04LA38qNq/lIaUUpRoFUsyaBZHQLbrtLIgeRx1fZQoaAZoCWgPQwjHZ7J/ngbQv5SGlFKUaBVLMmgWR0C27KLb5/LDdX2UKGgGaAloD0MIofKv5ZVr4r+UhpRSlGgVSzJoFkdAtuyBjFyaNXV9lChoBmgJaA9DCAr2X+emzdm/lIaUUpRoFUsyaBZHQLbsX/qPfbd1fZQoaAZoCWgPQwgYBcHj27vWv5SGlFKUaBVLMmgWR0C27EAAIY3vdX2UKGgGaAloD0MIY9AJoYMuxb+UhpRSlGgVSzJoFkdAtu0z4Glhw3V9lChoBmgJaA9DCCgNNQpJZtO/lIaUUpRoFUsyaBZHQLbtEpQDV6N1fZQoaAZoCWgPQwieKAmJtI3Fv5SGlFKUaBVLMmgWR0C27PFlPJq7dX2UKGgGaAloD0MIbApkdha927+UhpRSlGgVSzJoFkdAtuzR3GGVRnV9lChoBmgJaA9DCDboS29/Lsq/lIaUUpRoFUsyaBZHQLbtwYB/7SB1fZQoaAZoCWgPQwjAJJUp5iDgv5SGlFKUaBVLMmgWR0C27aAxN7BwdX2UKGgGaAloD0MI3+LhPQeW1b+UhpRSlGgVSzJoFkdAtu1+sNlRQHV9lChoBmgJaA9DCEEN38K68de/lIaUUpRoFUsyaBZHQLbtXq9XcQB1fZQoaAZoCWgPQwjTodPzbizYv5SGlFKUaBVLMmgWR0C27kx37k4ndX2UKGgGaAloD0MII0kQroBC1b+UhpRSlGgVSzJoFkdAtu4rMV1wHnV9lChoBmgJaA9DCMnGgy12+9i/lIaUUpRoFUsyaBZHQLbuCbj94u91fZQoaAZoCWgPQwjKxK2CGOjZv5SGlFKUaBVLMmgWR0C27enQUpNLdX2UKGgGaAloD0MIFEAxsmSOzb+UhpRSlGgVSzJoFkdAtu7WenQ6ZHV9lChoBmgJaA9DCJVE9kGWBdu/lIaUUpRoFUsyaBZHQLbutZkkKNR1fZQoaAZoCWgPQwgM6lvmdFnWv5SGlFKUaBVLMmgWR0C27pR/3FkydX2UKGgGaAloD0MIgJpattYX0r+UhpRSlGgVSzJoFkdAtu50hcJMQHV9lChoBmgJaA9DCAKfH0YIj+a/lIaUUpRoFUsyaBZHQLbvdgRbr1N1fZQoaAZoCWgPQwgw1cxaCkjav5SGlFKUaBVLMmgWR0C271SqEOAidX2UKGgGaAloD0MI0QfL2NDNyr+UhpRSlGgVSzJoFkdAtu8zMqz7dnV9lChoBmgJaA9DCPDBa5c2HNi/lIaUUpRoFUsyaBZHQLbvEzBAOax1fZQoaAZoCWgPQwiCyCJNvAPOv5SGlFKUaBVLMmgWR0C27/63mV7hdX2UKGgGaAloD0MIelImNbQB2L+UhpRSlGgVSzJoFkdAtu/dbNbC8HV9lChoBmgJaA9DCM+G/DOD+M6/lIaUUpRoFUsyaBZHQLbvu/JNj9Z1fZQoaAZoCWgPQwjcn4uGjEfNv5SGlFKUaBVLMmgWR0C275vzOHFhdX2UKGgGaAloD0MIGYwRiULLyL+UhpRSlGgVSzJoFkdAtvCQnPVurXV9lChoBmgJaA9DCBoyHqUSnt2/lIaUUpRoFUsyaBZHQLbwb5GBnSR1fZQoaAZoCWgPQwgsLSP1nsrQv5SGlFKUaBVLMmgWR0C28E4PCl7/dX2UKGgGaAloD0MILH3ogvqW1L+UhpRSlGgVSzJoFkdAtvAuEL6UJXV9lChoBmgJaA9DCMoa9RCN7tS/lIaUUpRoFUsyaBZHQLbxHGdI5HV1fZQoaAZoCWgPQwh+i06WWm/iv5SGlFKUaBVLMmgWR0C28PsSPEKmdX2UKGgGaAloD0MITUwXYvVH0b+UhpRSlGgVSzJoFkdAtvDZi+cpb3V9lChoBmgJaA9DCF95kJ4ih9m/lIaUUpRoFUsyaBZHQLbwuX18LKF1fZQoaAZoCWgPQwgu5Xyx9+Lbv5SGlFKUaBVLMmgWR0C28aXY+Sr6dX2UKGgGaAloD0MI/oFy275H2b+UhpRSlGgVSzJoFkdAtvGEikfs/3V9lChoBmgJaA9DCIBjz57L1N6/lIaUUpRoFUsyaBZHQLbxYvrWy1N1fZQoaAZoCWgPQwg4ukp319nXv5SGlFKUaBVLMmgWR0C28UL961LKdX2UKGgGaAloD0MIMVwdAHFXz7+UhpRSlGgVSzJoFkdAtvJggwGnoHV9lChoBmgJaA9DCIKo+wCkNtS/lIaUUpRoFUsyaBZHQLbyP5Dqnm91fZQoaAZoCWgPQwjO/kC5bd/Wv5SGlFKUaBVLMmgWR0C28h5qdpZfdX2UKGgGaAloD0MI+fVDbLBw1L+UhpRSlGgVSzJoFkdAtvH+1WsBAHV9lChoBmgJaA9DCAMjL2tigce/lIaUUpRoFUsyaBZHQLbzR4OMERt1fZQoaAZoCWgPQwizBu+rcqHZv5SGlFKUaBVLMmgWR0C28yaZ+hGpdX2UKGgGaAloD0MIlx5N9WT+z7+UhpRSlGgVSzJoFkdAtvMFjslb/3V9lChoBmgJaA9DCLoxPWGJB9i/lIaUUpRoFUsyaBZHQLby5gDRtxd1ZS4="
60
+ },
61
+ "ep_success_buffer": {
62
+ ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
+ },
65
+ "_n_updates": 100000,
66
+ "n_steps": 5,
67
+ "gamma": 0.99,
68
+ "gae_lambda": 1.0,
69
+ "ent_coef": 0.0,
70
+ "vf_coef": 0.5,
71
+ "max_grad_norm": 0.5,
72
+ "normalize_advantage": false,
73
+ "observation_space": {
74
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
76
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
+ "_shape": null,
78
+ "dtype": null,
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gym.spaces.box.Box'>",
83
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
+ "dtype": "float32",
85
+ "_shape": [
86
+ 3
87
+ ],
88
+ "low": "[-1. -1. -1.]",
89
+ "high": "[1. 1. 1.]",
90
+ "bounded_below": "[ True True True]",
91
+ "bounded_above": "[ True True True]",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 4
95
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:adba58f65110072cb3c572fd95bb67bb4993c377f4f90e4157b646ef03e021e8
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd95a828d4f0d4961a9e89021f79d7132314bb3882c4e19516dc9d1679aa9f13
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.0-52-generic-x86_64-with-glibc2.29 # 58~20.04.1-Ubuntu SMP Thu Oct 13 13:09:46 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 1.12.1
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.4
7
+ - Gym: 0.21.0
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fa5a24ed360>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa5a24e5cc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682906801937527748, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAPE0hP3EMjb0hOd4/PE0hP3EMjb0hOd4/PE0hP3EMjb0hOd4/PE0hP3EMjb0hOd4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAAmIoP0Pj9L+1CuY9MfDsPxL7fT9ndKU+xuQ8P2cgqT9cHZc/E4AJQFQs5r8v4oy/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA8TSE/cQyNvSE53j8MCd89+Qz5vDze3D08TSE/cQyNvSE53j8MCd89+Qz5vDze3D08TSE/cQyNvSE53j8MCd89+Qz5vDze3D08TSE/cQyNvSE53j8MCd89+Qz5vDze3D2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.63008475 -0.06887139 1.7361184 ]\n [ 0.63008475 -0.06887139 1.7361184 ]\n [ 0.63008475 -0.06887139 1.7361184 ]\n [ 0.63008475 -0.06887139 1.7361184 ]]", "desired_goal": "[[ 0.6577455 -1.9131855 0.11232511]\n [ 1.8510801 0.9921123 0.3231537 ]\n [ 0.7378658 1.3213013 1.1805835 ]\n [ 2.148442 -1.7982278 -1.1006526 ]]", "observation": "[[ 0.63008475 -0.06887139 1.7361184 0.10890397 -0.03040169 0.10784575]\n [ 0.63008475 -0.06887139 1.7361184 0.10890397 -0.03040169 0.10784575]\n [ 0.63008475 -0.06887139 1.7361184 0.10890397 -0.03040169 0.10784575]\n [ 0.63008475 -0.06887139 1.7361184 0.10890397 -0.03040169 0.10784575]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAFv2BPe7JhT1v44U+dulaPaFX5z3lpQE+Jn68vS3z0T3Bvno+bQKtPC6vuL34Ihk9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.063471 0.06532656 0.2615008 ]\n [ 0.0534453 0.11296011 0.1266094 ]\n [-0.09203748 0.1025146 0.2448683 ]\n [ 0.02111932 -0.09017788 0.03738686]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVnQMAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJxHhXwTNKcCUhpRSlIwBbJRLMowBdJRHP+5P/rB0p3J1fZQoaAZoCWgPQwiSWb3D7bAgwJSGlFKUaBVLMmgWRz/qNnwob4rSdX2UKGgGaAloD0MIPIVcqWdBLMCUhpRSlGgVSzJoFkc/5gLG7z06HXV9lChoBmgJaA9DCHxkc9U8NyLAlIaUUpRoFUsyaBZHP+G3azu4PPN1fZQoaAZoCWgPQwgZH2Yv2xYrwJSGlFKUaBVLMmgWRz/3x+4LCvX9dX2UKGgGaAloD0MI1sbYCS95LsCUhpRSlGgVSzJoFkc/9bwkPczqKXV9lChoBmgJaA9DCKJe8GlOri7AlIaUUpRoFUsyaBZHP/OiLEUCaJB1fZQoaAZoCWgPQwinBS/6ClIawJSGlFKUaBVLMmgWRz/xfTXrdFfBdX2UKGgGaAloD0MIvqJbr+lBKsCUhpRSlGgVSzJoFkdAAOGNaQmu1XV9lChoBmgJaA9DCFYPmIdMASvAlIaUUpRoFUsyaBZHP//BkZrHlwN1fZQoaAZoCWgPQwjFAfT7/v0awJSGlFKUaBVLMmgWRz/9rQswtapxdX2UKGgGaAloD0MImiUBamoZJsCUhpRSlGgVSzJoFkc/+4oVmBe5WnV9lChoBmgJaA9DCJWZ0vpbbjXAlIaUUpRoFUsyaBZHQAfVwxWT5ft1fZQoaAZoCWgPQwhHHogs0mwhwJSGlFKUaBVLMmgWR0AG0GzKLbYcdX2UKGgGaAloD0MIW0OpvYh2J8CUhpRSlGgVSzJoFkdABcebutwJgXV9lChoBmgJaA9DCHkfR3Nk9SbAlIaUUpRoFUsyaBZHQAS7oB7u2JB1fZQoaAZoCWgPQwi5qYHmc1YlwJSGlFKUaBVLMmgWR0AObkELYwqRdX2UKGgGaAloD0MI007N5QZzI8CUhpRSlGgVSzJoFkdADWnOSntOVXV9lChoBmgJaA9DCD9uv3yyeiPAlIaUUpRoFUsyaBZHQAxkRJ2+wkh1fZQoaAZoCWgPQwgOvFruzBwqwJSGlFKUaBVLMmgWR0ALUxZdOZb7dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5891d29160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5891d2a090>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679883456388321881, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUS9ob21lL3VidW50dS8ubG9jYWwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUS9ob21lL3VidW50dS8ubG9jYWwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAqGzCPh5+IDyp9Qw/qGzCPh5+IDyp9Qw/qGzCPh5+IDyp9Qw/qGzCPh5+IDyp9Qw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVUKlP+bwdD/AH5O/mejHPxZrbz7Ax5I/3bhjv5N0hD6F9Zu/K+FhP9xSo76Iuce/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACobMI+Hn4gPKn1DD+3fda6dHWCujMDBDyobMI+Hn4gPKn1DD+3fda6dHWCujMDBDyobMI+Hn4gPKn1DD+3fda6dHWCujMDBDyobMI+Hn4gPKn1DD+3fda6dHWCujMDBDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.37973523 0.00979569 0.5506235 ]\n [0.37973523 0.00979569 0.5506235 ]\n [0.37973523 0.00979569 0.5506235 ]\n [0.37973523 0.00979569 0.5506235 ]]", "desired_goal": "[[ 1.2910868 0.9568008 -1.1494064 ]\n [ 1.5617858 0.23380694 1.1467209 ]\n [-0.88953954 0.2587019 -1.2184302 ]\n [ 0.88234204 -0.31899154 -1.5603495 ]]", "observation": "[[ 0.37973523 0.00979569 0.5506235 -0.00163644 -0.00099532 0.0080574 ]\n [ 0.37973523 0.00979569 0.5506235 -0.00163644 -0.00099532 0.0080574 ]\n [ 0.37973523 0.00979569 0.5506235 -0.00163644 -0.00099532 0.0080574 ]\n [ 0.37973523 0.00979569 0.5506235 -0.00163644 -0.00099532 0.0080574 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/ywOvp4AFb6stoo8XsxWvVA7mj0UqIw+WQkMPiuOTz2yg8w8NPEZvNPnDj3N+m0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.13884352 -0.14551017 0.01693281]\n [-0.05244099 0.07530844 0.27471983]\n [ 0.13675441 0.05067269 0.02496514]\n [-0.00939589 0.03488905 0.23240204]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/G1PkNju3L+UhpRSlIwBbJRLMowBdJRHQLbjxldkauR1fZQoaAZoCWgPQwjj3ZGx2vzdv5SGlFKUaBVLMmgWR0C246VwPy08dX2UKGgGaAloD0MIJAnCFVCoy7+UhpRSlGgVSzJoFkdAtuOEU7CBPXV9lChoBmgJaA9DCEa28/3UeNG/lIaUUpRoFUsyaBZHQLbjZLdN34d1fZQoaAZoCWgPQwiiC+pb5nTYv5SGlFKUaBVLMmgWR0C25KsENe+mdX2UKGgGaAloD0MI3uaNk8I84b+UhpRSlGgVSzJoFkdAtuSKHYYixHV9lChoBmgJaA9DCLqfU5CfDeC/lIaUUpRoFUsyaBZHQLbkaQ+lj3F1fZQoaAZoCWgPQwjpCyHn/X+4v5SGlFKUaBVLMmgWR0C25EmLP2PDdX2UKGgGaAloD0MIPwEUI0vm2b+UhpRSlGgVSzJoFkdAtuWbdYW+G3V9lChoBmgJaA9DCHAmpgux+ta/lIaUUpRoFUsyaBZHQLbleophF3J1fZQoaAZoCWgPQwgTSIld29vTv5SGlFKUaBVLMmgWR0C25Vl3+uNhdX2UKGgGaAloD0MI9S7ej9sv0r+UhpRSlGgVSzJoFkdAtuU557gKnnV9lChoBmgJaA9DCI9SCU/o9de/lIaUUpRoFUsyaBZHQLbmjF+d9Ul1fZQoaAZoCWgPQwifH0YIjzbQv5SGlFKUaBVLMmgWR0C25muRkmQbdX2UKGgGaAloD0MIKpFEL6NY2r+UhpRSlGgVSzJoFkdAtuZKkfs/p3V9lChoBmgJaA9DCDmYTYBh+dW/lIaUUpRoFUsyaBZHQLbmKxkupS91fZQoaAZoCWgPQwhruTMTDOfQv5SGlFKUaBVLMmgWR0C254D/+85CdX2UKGgGaAloD0MIaRzqd2Fr1r+UhpRSlGgVSzJoFkdAtudgAwPAf3V9lChoBmgJaA9DCOvFUE60q9y/lIaUUpRoFUsyaBZHQLbnPvSMLnd1fZQoaAZoCWgPQwhpGhTNA1jUv5SGlFKUaBVLMmgWR0C25x9mcvugdX2UKGgGaAloD0MIJSAm4UIe0r+UhpRSlGgVSzJoFkdAtug3sjVx0nV9lChoBmgJaA9DCKbtX1lpUuG/lIaUUpRoFUsyaBZHQLboFl90A951fZQoaAZoCWgPQwgUXRd+cD7Zv5SGlFKUaBVLMmgWR0C25/TbrTpgdX2UKGgGaAloD0MI+imOA6+Wzb+UhpRSlGgVSzJoFkdAtufU2kzoEHV9lChoBmgJaA9DCMU3FD5bB9K/lIaUUpRoFUsyaBZHQLbowqo60Y11fZQoaAZoCWgPQwgX1LfM6bLYv5SGlFKUaBVLMmgWR0C26KFKK509dX2UKGgGaAloD0MI0qjAyTZw0r+UhpRSlGgVSzJoFkdAtuh/vRZ2ZHV9lChoBmgJaA9DCH7/5sWJr9u/lIaUUpRoFUsyaBZHQLboX8tf5UN1fZQoaAZoCWgPQwjeIFor2hzYv5SGlFKUaBVLMmgWR0C26U97BwdbdX2UKGgGaAloD0MI1xael4qN2L+UhpRSlGgVSzJoFkdAtukuOU+s5nV9lChoBmgJaA9DCHvdIjDWN9m/lIaUUpRoFUsyaBZHQLbpDLehwl11fZQoaAZoCWgPQwgPnZ53Y0Hev5SGlFKUaBVLMmgWR0C26Oyq+8GtdX2UKGgGaAloD0MI9+RhodY007+UhpRSlGgVSzJoFkdAtunYKa5PM3V9lChoBmgJaA9DCOoHdZFCWcS/lIaUUpRoFUsyaBZHQLbpttNBWxR1fZQoaAZoCWgPQwjpX5LKFHPRv5SGlFKUaBVLMmgWR0C26ZVJcxCZdX2UKGgGaAloD0MIOpUMAFVc4b+UhpRSlGgVSzJoFkdAtul1VFQVK3V9lChoBmgJaA9DCO/Lme0KfdO/lIaUUpRoFUsyaBZHQLbqZiXY1511fZQoaAZoCWgPQwikGCDRBIrTv5SGlFKUaBVLMmgWR0C26kTZHuqndX2UKGgGaAloD0MIP3RBfcucxL+UhpRSlGgVSzJoFkdAtuojWhAWznV9lChoBmgJaA9DCH9skh/xK9q/lIaUUpRoFUsyaBZHQLbqA1GLDQ91fZQoaAZoCWgPQwjsouiBj0Hjv5SGlFKUaBVLMmgWR0C26v7G7z06dX2UKGgGaAloD0MIgV1NnrKa07+UhpRSlGgVSzJoFkdAturdfw7T2HV9lChoBmgJaA9DCN0MN+Dzw9a/lIaUUpRoFUsyaBZHQLbqu/y5I6N1fZQoaAZoCWgPQwiwBFJi1/bav5SGlFKUaBVLMmgWR0C26pv/WDpUdX2UKGgGaAloD0MItoMR+wRQ1r+UhpRSlGgVSzJoFkdAtuuMZvUBn3V9lChoBmgJaA9DCGMraFpiZca/lIaUUpRoFUsyaBZHQLbraxY7q6h1fZQoaAZoCWgPQwjZQpCDEmbRv5SGlFKUaBVLMmgWR0C260mRzRx+dX2UKGgGaAloD0MInnsPlxx307+UhpRSlGgVSzJoFkdAtuspj+aScXV9lChoBmgJaA9DCIIavoV1Y+C/lIaUUpRoFUsyaBZHQLbsF36hxo91fZQoaAZoCWgPQwhYrOEi93TYv5SGlFKUaBVLMmgWR0C26/Y3eenRdX2UKGgGaAloD0MIJnDrbp7qyr+UhpRSlGgVSzJoFkdAtuvUscyWRnV9lChoBmgJaA9DCG04LA38qNq/lIaUUpRoFUsyaBZHQLbrtLIgeRx1fZQoaAZoCWgPQwjHZ7J/ngbQv5SGlFKUaBVLMmgWR0C27KLb5/LDdX2UKGgGaAloD0MIofKv5ZVr4r+UhpRSlGgVSzJoFkdAtuyBjFyaNXV9lChoBmgJaA9DCAr2X+emzdm/lIaUUpRoFUsyaBZHQLbsX/qPfbd1fZQoaAZoCWgPQwgYBcHj27vWv5SGlFKUaBVLMmgWR0C27EAAIY3vdX2UKGgGaAloD0MIY9AJoYMuxb+UhpRSlGgVSzJoFkdAtu0z4Glhw3V9lChoBmgJaA9DCCgNNQpJZtO/lIaUUpRoFUsyaBZHQLbtEpQDV6N1fZQoaAZoCWgPQwieKAmJtI3Fv5SGlFKUaBVLMmgWR0C27PFlPJq7dX2UKGgGaAloD0MIbApkdha927+UhpRSlGgVSzJoFkdAtuzR3GGVRnV9lChoBmgJaA9DCDboS29/Lsq/lIaUUpRoFUsyaBZHQLbtwYB/7SB1fZQoaAZoCWgPQwjAJJUp5iDgv5SGlFKUaBVLMmgWR0C27aAxN7BwdX2UKGgGaAloD0MI3+LhPQeW1b+UhpRSlGgVSzJoFkdAtu1+sNlRQHV9lChoBmgJaA9DCEEN38K68de/lIaUUpRoFUsyaBZHQLbtXq9XcQB1fZQoaAZoCWgPQwjTodPzbizYv5SGlFKUaBVLMmgWR0C27kx37k4ndX2UKGgGaAloD0MII0kQroBC1b+UhpRSlGgVSzJoFkdAtu4rMV1wHnV9lChoBmgJaA9DCMnGgy12+9i/lIaUUpRoFUsyaBZHQLbuCbj94u91fZQoaAZoCWgPQwjKxK2CGOjZv5SGlFKUaBVLMmgWR0C27enQUpNLdX2UKGgGaAloD0MIFEAxsmSOzb+UhpRSlGgVSzJoFkdAtu7WenQ6ZHV9lChoBmgJaA9DCJVE9kGWBdu/lIaUUpRoFUsyaBZHQLbutZkkKNR1fZQoaAZoCWgPQwgM6lvmdFnWv5SGlFKUaBVLMmgWR0C27pR/3FkydX2UKGgGaAloD0MIgJpattYX0r+UhpRSlGgVSzJoFkdAtu50hcJMQHV9lChoBmgJaA9DCAKfH0YIj+a/lIaUUpRoFUsyaBZHQLbvdgRbr1N1fZQoaAZoCWgPQwgw1cxaCkjav5SGlFKUaBVLMmgWR0C271SqEOAidX2UKGgGaAloD0MI0QfL2NDNyr+UhpRSlGgVSzJoFkdAtu8zMqz7dnV9lChoBmgJaA9DCPDBa5c2HNi/lIaUUpRoFUsyaBZHQLbvEzBAOax1fZQoaAZoCWgPQwiCyCJNvAPOv5SGlFKUaBVLMmgWR0C27/63mV7hdX2UKGgGaAloD0MIelImNbQB2L+UhpRSlGgVSzJoFkdAtu/dbNbC8HV9lChoBmgJaA9DCM+G/DOD+M6/lIaUUpRoFUsyaBZHQLbvu/JNj9Z1fZQoaAZoCWgPQwjcn4uGjEfNv5SGlFKUaBVLMmgWR0C275vzOHFhdX2UKGgGaAloD0MIGYwRiULLyL+UhpRSlGgVSzJoFkdAtvCQnPVurXV9lChoBmgJaA9DCBoyHqUSnt2/lIaUUpRoFUsyaBZHQLbwb5GBnSR1fZQoaAZoCWgPQwgsLSP1nsrQv5SGlFKUaBVLMmgWR0C28E4PCl7/dX2UKGgGaAloD0MILH3ogvqW1L+UhpRSlGgVSzJoFkdAtvAuEL6UJXV9lChoBmgJaA9DCMoa9RCN7tS/lIaUUpRoFUsyaBZHQLbxHGdI5HV1fZQoaAZoCWgPQwh+i06WWm/iv5SGlFKUaBVLMmgWR0C28PsSPEKmdX2UKGgGaAloD0MITUwXYvVH0b+UhpRSlGgVSzJoFkdAtvDZi+cpb3V9lChoBmgJaA9DCF95kJ4ih9m/lIaUUpRoFUsyaBZHQLbwuX18LKF1fZQoaAZoCWgPQwgu5Xyx9+Lbv5SGlFKUaBVLMmgWR0C28aXY+Sr6dX2UKGgGaAloD0MI/oFy275H2b+UhpRSlGgVSzJoFkdAtvGEikfs/3V9lChoBmgJaA9DCIBjz57L1N6/lIaUUpRoFUsyaBZHQLbxYvrWy1N1fZQoaAZoCWgPQwg4ukp319nXv5SGlFKUaBVLMmgWR0C28UL961LKdX2UKGgGaAloD0MIMVwdAHFXz7+UhpRSlGgVSzJoFkdAtvJggwGnoHV9lChoBmgJaA9DCIKo+wCkNtS/lIaUUpRoFUsyaBZHQLbyP5Dqnm91fZQoaAZoCWgPQwjO/kC5bd/Wv5SGlFKUaBVLMmgWR0C28h5qdpZfdX2UKGgGaAloD0MI+fVDbLBw1L+UhpRSlGgVSzJoFkdAtvH+1WsBAHV9lChoBmgJaA9DCAMjL2tigce/lIaUUpRoFUsyaBZHQLbzR4OMERt1fZQoaAZoCWgPQwizBu+rcqHZv5SGlFKUaBVLMmgWR0C28yaZ+hGpdX2UKGgGaAloD0MIlx5N9WT+z7+UhpRSlGgVSzJoFkdAtvMFjslb/3V9lChoBmgJaA9DCLoxPWGJB9i/lIaUUpRoFUsyaBZHQLby5gDRtxd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.0-52-generic-x86_64-with-glibc2.29 # 58~20.04.1-Ubuntu SMP Thu Oct 13 13:09:46 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.8.0", "PyTorch": "1.12.1", "GPU Enabled": "True", "Numpy": "1.23.4", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -30.499274300783874, "std_reward": 6.550284623010823, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-01T02:07:28.740843"}
 
1
+ {"mean_reward": -2.5363151947036386, "std_reward": 0.4663170839498799, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-14T05:24:43.492932"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a125dd800706e8a03f122981c7c1f79095f3fc5258f85b5cc8f44041211b5508
3
- size 2387
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2f0bdbd4d347907cdaec242c5e0731ee47ee8f1554d0db84b21ca5ed9578eab
3
+ size 2368