Narkantak's picture
End of training
b2b9d95 verified
metadata
license: apache-2.0
base_model: google-bert/bert-large-cased-whole-word-masking
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: Intent-classification-BERT-Large-Ashuv5
    results: []

Intent-classification-BERT-Large-Ashuv5

This model is a fine-tuned version of google-bert/bert-large-cased-whole-word-masking on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7988
  • Accuracy: 0.1420
  • F1: 0.0414
  • Precision: 0.0237
  • Recall: 0.1667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
2.1123 0.24 10 1.8066 0.2174 0.0595 0.0362 0.1667
1.8577 0.49 20 1.9500 0.1242 0.0368 0.0207 0.1667
1.8864 0.73 30 1.7999 0.1801 0.0509 0.0300 0.1667
1.8516 0.98 40 1.8570 0.1429 0.0417 0.0238 0.1667
1.8664 1.22 50 1.8667 0.1242 0.0368 0.0207 0.1667
1.8207 1.46 60 1.9616 0.1180 0.0352 0.0197 0.1667
1.8652 1.71 70 1.7831 0.2174 0.0595 0.0362 0.1667
1.8372 1.95 80 1.8018 0.2174 0.0595 0.0362 0.1667
1.8671 2.2 90 1.8436 0.1180 0.0352 0.0197 0.1667
1.8484 2.44 100 1.7722 0.2174 0.0595 0.0362 0.1667
1.8262 2.68 110 1.7752 0.2174 0.0595 0.0362 0.1667
1.8292 2.93 120 1.8064 0.1242 0.0368 0.0207 0.1667

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.2
  • Datasets 2.1.0
  • Tokenizers 0.15.2