pegasus-samsum

This model is a fine-tuned version of google/pegasus-cnn_dailymail on the samsum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3775

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
2.0058 0.1086 100 1.6564
1.6976 0.2172 200 1.5318
1.6041 0.3258 300 1.4837
1.6314 0.4344 400 1.4586
1.6014 0.5430 500 1.4401
1.6482 0.6516 600 1.4302
1.6023 0.7602 700 1.4151
1.621 0.8689 800 1.4111
1.5236 0.9775 900 1.4033
1.4723 1.0858 1000 1.4004
1.4854 1.1944 1100 1.3961
1.4423 1.3030 1200 1.3924
1.5885 1.4116 1300 1.3860
1.4873 1.5202 1400 1.3853
1.4214 1.6288 1500 1.3801
1.3327 1.7374 1600 1.3794
1.4677 1.8460 1700 1.3781
1.4413 1.9547 1800 1.3775

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
16
Safetensors
Model size
571M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for NandiniRangass/pegasus-samsum

Finetuned
(168)
this model

Dataset used to train NandiniRangass/pegasus-samsum