metadata
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: my_awesome_model_2
results: []
my_awesome_model_2
This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1188
- Accuracy: 0.9479
- F1: 0.9507
- Precision: 0.9389
- Recall: 0.9628
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.4769 | 1.0 | 1225 | 0.4127 | 0.7860 | 0.7898 | 0.8100 | 0.7706 |
0.4112 | 2.0 | 2450 | 0.3482 | 0.8268 | 0.8197 | 0.8972 | 0.7546 |
0.3384 | 3.0 | 3675 | 0.2593 | 0.8856 | 0.8925 | 0.8760 | 0.9096 |
0.2788 | 4.0 | 4900 | 0.1963 | 0.9140 | 0.9172 | 0.9217 | 0.9127 |
0.2312 | 5.0 | 6125 | 0.1461 | 0.9400 | 0.9441 | 0.9179 | 0.9718 |
0.1791 | 6.0 | 7350 | 0.1188 | 0.9479 | 0.9507 | 0.9389 | 0.9628 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1