FaceScanPaliGemma_Race
from PIL import Image
import torch
from transformers import PaliGemmaProcessor, PaliGemmaForConditionalGeneration, BitsAndBytesConfig, TrainingArguments, Trainer
model = PaliGemmaForConditionalGeneration.from_pretrained('NYUAD-ComNets/FaceScanPaliGemma_Race',torch_dtype=torch.bfloat16)
input_text = "what is the race of the person in the image?"
processor = PaliGemmaProcessor.from_pretrained("google/paligemma-3b-pt-224")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
input_image = Image.open('image_path')
inputs = processor(text=input_text, images=input_image, padding="longest", do_convert_rgb=True, return_tensors="pt").to(device)
inputs = inputs.to(dtype=model.dtype)
with torch.no_grad():
output = model.generate(**inputs, max_length=500)
result=processor.decode(output[0], skip_special_tokens=True)[len(input_text):].strip()
Loading in 4-bit / 8-bit
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration, BitsAndBytesConfig
from PIL import Image
import requests
import torch
import time
device = "cuda:0"
dtype = torch.bfloat16
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
model = PaliGemmaForConditionalGeneration.from_pretrained(
"NYUAD-ComNets/FaceScanPaliGemma_Race", quantization_config=quantization_config
).eval()
processor = AutoProcessor.from_pretrained("google/paligemma-3b-pt-224")
prompt = "what is the race of the person in the image?"
image = Image.open('image_path')
model_inputs = processor(text=prompt, images=image, return_tensors="pt").to(model.device)
input_len = model_inputs["input_ids"].shape[-1]
with torch.inference_mode():
generation = model.generate(**model_inputs, max_new_tokens=100, do_sample=False)
generation = generation[0][input_len:]
decoded = processor.decode(generation, skip_special_tokens=True)
print(decoded)
Model description
This model is a fine-tuned version of google/paligemma-3b-pt-224 on the FairFace dataset. The model aims to classify the race of face image or image with one person into seven categoris such as Black, East Asian, Indian, Latino_Hispanic, Middle Eastern, Southeast Asian, White
Model Performance
Accuracy: 81 %, F1 score: 79 %
Intended uses & limitations
This model is used for research purposes
Training and evaluation data
FairFace dataset was used for training and validating the model
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 5
Training results
Framework versions
- Transformers 4.42.4
- Pytorch 2.1.2+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
BibTeX entry and citation info
@article{aldahoul2024exploring,
title={Exploring Vision Language Models for Facial Attribute Recognition: Emotion, Race, Gender, and Age},
author={AlDahoul, Nouar and Tan, Myles Joshua Toledo and Kasireddy, Harishwar Reddy and Zaki, Yasir},
journal={arXiv preprint arXiv:2410.24148},
year={2024}
}
@misc{ComNets,
url={https://huggingface.co./NYUAD-ComNets/FaceScanPaliGemma_Race](https://huggingface.co./NYUAD-ComNets/FaceScanPaliGemma_Race)},
title={FaceScanPaliGemma_Race},
author={Nouar AlDahoul, Yasir Zaki}
}
- Downloads last month
- 41
Model tree for NYUAD-ComNets/FaceScanPaliGemma_Race
Base model
google/paligemma-3b-pt-224