|
Here's an adapted TWIZ intent detection model, trained on the TWIZ dataset, with an extra focus on simplicity! |
|
It achieves ~85% accuracy on the TWIZ test set, and should be especially useful for the WSDM students @ NOVA. |
|
|
|
I STRONGLY suggest interested students to check `model_code` in the `Files and versions` tab, where all the code used to get to the model (with the exception of actually uploading it here) is laid out nicely (I hope!) |
|
|
|
Here's the contents of `intent-detection-example.ipynb`, if you're just looking to use the model: |
|
|
|
```python |
|
with open("twiz-data/all_intents.json", 'r') as json_in: # all_intents.json can be found in the task-intent-detector/model_code directory |
|
data = json.load(json_in) |
|
|
|
id_to_intent, intent_to_id = dict(), dict() |
|
for i, intent in enumerate(data): |
|
id_to_intent[i] = intent |
|
intent_to_id[intent] = i |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained("NOVA-vision-language/task-intent-detector", num_labels=len(data), id2label=id_to_intent, label2id=intent_to_id) |
|
tokenizer = AutoTokenizer.from_pretrained("roberta-base") # you could try 'NOVA-vision-language/task-intent-detector', but I'm not sure I configured it correctly |
|
|
|
model_in = tokenizer("I really really wanna go to the next step", return_tensors='pt') |
|
with torch.no_grad(): |
|
logits = model(**model_in).logits # grab the predictions out of the model's classification head |
|
predicted_class_id = logits.argmax().item() # grab the index of the highest scoring output |
|
print(model.config.id2label[predicted_class_id]) # use the translation table we just created to translate between that id and the actual intent name |
|
``` |