The model uses only sign ӏ for explosive consonants (small cyrillic palochka letter)!

The model was teached by folloving David Dale's instructions for erzya language (https://arxiv.org/abs/2209.09368) and using code from his repository. Commentaries in Russian were left untouched.

import torch
from transformers import BertTokenizer, AutoModel
import numpy as np
import pandas as pd
import razdel
import matplotlib.pyplot as plt
from tqdm.auto import tqdm, trange

Download the model from Huggingface repository:

model_name = 'NM-development/labse-en-ru-ce-prototype'
tokenizer = BertTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)

Assign files with the texts you want to split into parallel sentences:

file_ru = None
file_nm = None


with open(file_nm, 'r') as f1, open(file_ru, 'r') as f2:
    nm_text = f1.read()
    ru_text = f2.read()

In the following section define auxillary functions for parallel sentence comparison:

def embed(text):
    encoded_input = tokenizer(text, padding=True, truncation=True, max_length=128, return_tensors='pt')
    with torch.inference_mode():
        model_output = model(**encoded_input.to(model.device))
    embeddings = model_output.pooler_output
    embeddings = torch.nn.functional.normalize(embeddings)
    return embeddings[0].cpu().numpy()

def get_top_mean_by_row(x, k=5):
    m, n = x.shape
    k = min(k, n)
    topk_indices = np.argpartition(x, -k, axis=1)[:, -k:]
    rows, _ = np.indices((m, k))
    return x[rows, topk_indices].mean(1)

def align3(sims):
    rewards = np.zeros_like(sims)
    choices = np.zeros_like(sims).astype(int)  # 1: choose this pair, 2: decrease i, 3: decrease j

    # алгоритм, разрешающий пропускать сколько угодно пар, лишь бы была монотонность
    for i in range(sims.shape[0]):
        for j in range(0, sims.shape[1]):
            # вариант первый: выровнять i-тое предложение с j-тым
            score_add = sims[i, j]
            if i > 0 and j > 0:  # вот как тогда выровняются предыдущие 
                score_add += rewards[i-1, j-1]
                choices[i, j] = 1
            best = score_add
            if i > 0 and rewards[i-1, j] > best:
                best = rewards[i-1, j]
                choices[i, j] = 2
            if j > 0 and rewards[i, j-1] > best:
                best = rewards[i, j-1]
                choices[i, j] = 3
            rewards[i, j] = best
    alignment = []
    i = sims.shape[0] - 1
    j = sims.shape[1] - 1
    while i > 0 and j > 0:
        if choices[i, j] == 1:
            alignment.append([i, j])
            i -= 1
            j -= 1
        elif choices[i, j] == 2:
            i -= 1
        else:
            j -= 1
    return alignment[::-1]

def make_sents(text):
    sents = [s.text.replace('\n', ' ').strip() for p in text.split('\n\n') for s in razdel.sentenize(p)]
    sents = [s for s in sents if s]
    return sents

Firstly split your texts into sentences:

sents_nm = make_sents(nm_text)
sents_ru = make_sents(ru_text)

Then embed all the chunks:

emb_ru = np.stack([embed(s) for s in tqdm(sents_ru)])
emb_nm = np.stack([embed(s) for s in tqdm(sents_nm)])

Now compare sentenses' semanics vectors and build correlation heatmap:

pen = np.array([[min(len(x), len(y)) / max(len(x), len(y)) for x in sents_nm] for y in sents_ru])
sims = np.maximum(0, np.dot(emb_ru, emb_nm.T)) ** 1 * pen

alpha = 0.2
penalty = 0.2
sims_rel = (sims.T - get_top_mean_by_row(sims) * alpha).T - get_top_mean_by_row(sims.T) * alpha - penalty

alignment = align3(sims_rel)

print(sum(sims[i, j] for i, j in alignment) / min(sims.shape))
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.imshow(sims_rel)
plt.subplot(1, 2, 2)
plt.scatter(*list(zip(*alignment)), s=5);

Finally, save the parallel corpus into a json file:

nm_ru_parallel_corpus = pd.DataFrame({'nm_text' : [sents_nm[x[1]] for x in alignment], 'ru_text' : [sents_ru[x[0]] for x in alignment]})
corpus_filename = 'nm_ru_corpus.json'
with open(corpus_filename, 'w') as f:
    nm_ru_parallel_corpus.to_json(f, force_ascii=False, indent=4)
Downloads last month
50
Safetensors
Model size
142M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .