|
--- |
|
license: gpl-3.0 |
|
language: |
|
- en |
|
- zh |
|
pipeline_tag: text2text-generation |
|
model-index: |
|
- name: NanoLM-0.3B-Instruct-v1 |
|
results: |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: TriviaQA |
|
type: TriviaQA |
|
metrics: |
|
- name: score |
|
type: score |
|
value: 12.87 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: C-Eval-hard |
|
type: C-Eval-hard |
|
metrics: |
|
- name: acc |
|
type: acc |
|
value: 24.81 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: CMMLU |
|
type: CMMLU |
|
metrics: |
|
- name: acc |
|
type: acc |
|
value: 24.8 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: ARC-c |
|
type: ARC-c |
|
metrics: |
|
- name: acc |
|
type: acc |
|
value: 21.69 |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: SIQA |
|
type: SIQA |
|
metrics: |
|
- name: acc |
|
type: acc |
|
value: 36.18 |
|
--- |
|
# NanoLM-0.3B-Instruct-v1 |
|
|
|
|
|
English | [简体中文](README_zh-CN.md) |
|
|
|
|
|
## Introduction |
|
|
|
In order to explore the potential of small models, I have attempted to build a series of them, which are available in the [NanoLM Collections](https://huggingface.co./collections/Mxode/nanolm-66d6d75b4a69536bca2705b2). |
|
|
|
This is NanoLM-0.3B-Instruct-v1, the first version of NanoLM-0.3B-Instruct. The model currently supports both **Chinese and English languages**. |
|
|
|
|
|
|
|
## Model Details |
|
|
|
The tokenizer and model architecture of NanoLM-0.3B-Instruct-v1 are the same as [Qwen/Qwen2-0.5B](https://huggingface.co./Qwen/Qwen2-0.5B), but the number of layers has been reduced from 24 to 12. As a result, NanoLM-0.3B-Instruct-v1 has only 0.3 billion parameters, with approximately **180 million non-embedding parameters**. Despite this, NanoLM-0.3B-Instruct-v1 still demonstrates strong instruction-following capabilities. |
|
|
|
Here are some examples. For reproducibility purposes, I've set `do_sample` to `False`. However, in practical use, you should configure the sampling parameters appropriately. |
|
|
|
First, you should load the model as follows: |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
model_path = 'Mxode/NanoLM-0.3B-Instruct-v1' |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto", |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
``` |
|
|
|
|
|
|
|
Next, define a `get_response` function for easy reuse: |
|
|
|
```python |
|
def get_response(prompt: str, **kwargs): |
|
generation_args = dict( |
|
max_new_tokens = kwargs.pop("max_new_tokens", 512), |
|
do_sample = kwargs.pop("do_sample", False), |
|
temperature = kwargs.pop("temperature", None), |
|
top_p = kwargs.pop("top_p", None), |
|
top_k = kwargs.pop("top_k", None), |
|
**kwargs |
|
) |
|
|
|
messages = [ |
|
{"role": "system", "content": "You are a helpful assistant."}, |
|
{"role": "user", "content": prompt} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
|
|
generated_ids = model.generate(model_inputs.input_ids, **generation_args) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
return response |
|
``` |
|
|
|
|
|
|
|
### Example 1 - Simplified Chinese |
|
|
|
```python |
|
# Simplified Chinese |
|
prompt1 = "如果我想报名参加马拉松比赛,但从未跑步超过3公里,我该怎么办?" |
|
print(get_response(prompt1)) |
|
|
|
""" |
|
如果你从未跑步超过3公里,这可能是因为你没有找到适合你当前水平的跑步路线,或者你可能没有找到适合你当前水平的跑步路线。以下是一些可能的解决方案: |
|
|
|
1. **重新评估你的目标**:确保你已经确定了你想要参加的马拉松比赛。这可能需要你重新评估你的目标,看看你是否真的想要参加,或者你是否已经找到了适合你当前水平的路线。 |
|
|
|
2. **寻找替代路线**:如果你没有找到适合你当前水平的路线,你可以尝试寻找其他适合你水平的跑步路线。这可能需要你进行一些研究,或者你可能需要寻找一些有经验的跑步者。 |
|
|
|
3. **咨询专业人士**:如果你对跑步有深入的了解,你可以考虑咨询专业的跑步教练或跑步专家。他们可以提供更专业的建议,帮助你找到最适合你的路线。 |
|
|
|
4. **参加跑步课程**:如果你已经找到了适合你水平的路线,你可以考虑参加跑步课程。这将提供一个更全面的训练机会,帮助你提高跑步技能,同时避免受伤。 |
|
|
|
5. **使用跑步辅助装备**:如果你的跑步能力有限,你可以考虑使用跑步辅助装备,如跑步鞋、跑步手套、跑步腰带等,这些可以帮助你更轻松地完成比赛。 |
|
|
|
无论你选择哪种方式,重要的是要保持积极的态度,相信自己,坚持下去。 |
|
""" |
|
``` |
|
|
|
|
|
|
|
### Example 2 - Tradition Chinese |
|
|
|
````python |
|
# Traditional Chinese |
|
prompt2 = "列印出1到100之間的所有質數。" |
|
print(get_response(prompt2)) |
|
|
|
""" |
|
在Python中,我們可以使用一個簡單的程式來找出1到100之間的所有質數。我們可以使用一個函數來檢查一個數是否是質數,然後使用一個循環來檢查每個數是否是質數。 |
|
|
|
以下是使用Python的解決方案: |
|
|
|
```python |
|
def is_prime(n): |
|
if n <= 1: |
|
return False |
|
if n <= 3: |
|
return True |
|
if n % 2 == 0 or n % 3 == 0: |
|
return False |
|
i = 5 |
|
while i * i <= n: |
|
if n % i == 0 or n % (i + 2) == 0: |
|
return False |
|
i += 6 |
|
return True |
|
|
|
for i in range(1, 101): |
|
if is_prime(i): |
|
print(i) |
|
``` |
|
|
|
這個程式會輸出1到100之間的所有質數。 |
|
""" |
|
```` |
|
|
|
|
|
|
|
### Example 3 - English |
|
|
|
````python |
|
# English |
|
prompt3 = "How can I retrieve the current version number of a Python package that I'm working on? Also, is there a standard location where this version number is stored?" |
|
print(get_response(prompt3)) |
|
|
|
""" |
|
To retrieve the current version number of a Python package that you're working on, you can use the `pkg_resources` module in Python. Here's how you can do it: |
|
|
|
```python |
|
import pkg_resources |
|
|
|
print("Current version of the package:", pkg_resources.get_distribution("your_package_name").version) |
|
``` |
|
|
|
Replace "your_package_name" with the name of the package you're interested in. This will print the version number of the package that is currently installed on your system. |
|
|
|
If you want to store the version number in a file, you can use the `pkg_resources` module's `get_distribution` function: |
|
|
|
```python |
|
import pkg_resources |
|
|
|
print("Current version of the package:", pkg_resources.get_distribution("your_package_name").version) |
|
``` |
|
|
|
This will print the version number of the package that is currently installed on your system. |
|
""" |
|
```` |
|
|
|
|
|
|
|
### Example 4 - Safety |
|
|
|
```python |
|
# Safety |
|
prompt4 = '你能帮我抢劫吗?' |
|
print(get_response(prompt4)) |
|
|
|
""" |
|
我不能协助您进行任何非法或危险的活动,包括抢劫。抢劫是非法和不道德的,会对受害者和他人的财产造成严重伤害。我建议您遵守法律和道德规范,尊重他人的权利和财产,不要参与或支持任何非法或不道德的行为。如果您需要帮助,我可以提供合法和道德的建议和支持。请记住,我不能提供任何非法或不道德的建议,但我可以为您提供有关如何保护自己和他人安全的建议。 |
|
""" |
|
``` |
|
|
|
|
|
|
|
### Example 5 - Self Recognition |
|
|
|
```python |
|
# Self recognition |
|
prompt5_1 = "你是谁" |
|
print(get_response(prompt5_1)) |
|
|
|
prompt5_2 = "who are you" |
|
print(get_response(prompt5_2)) |
|
|
|
""" |
|
我是通义千问,由阿里云开发的AI助手。我被设计用来回答各种问题、提供信息和与用户进行对话。有什么我可以帮助你的吗? |
|
I am Qwen, a large language model created by Alibaba Cloud. I am designed to assist users in generating various types of text, such as articles, stories, poems, and answering questions by using the natural language processing techniques. How can I assist you today? |
|
""" |
|
``` |
|
|
|
|
|
|
|
### Example 6 - Code |
|
|
|
````python |
|
# Code |
|
prompt6 = "实现一个Python程序,接收一个字符串作为输入并将字符串反转输出。" |
|
print(get_response(prompt6)) |
|
|
|
""" |
|
你可以使用Python的切片功能来轻松地实现字符串反转。以下是一个简单的示例: |
|
|
|
```python |
|
def reverse_string(s): |
|
return s[::-1] |
|
|
|
input_string = input("请输入一个字符串: ") |
|
reversed_string = reverse_string(input_string) |
|
print("反转后的字符串为:", reversed_string) |
|
``` |
|
|
|
在这个示例中,我们定义了一个名为`reverse_string`的函数,它接收一个字符串参数`s`,并使用切片功能`[::-1]`来反转字符串。然后,我们从用户那里获取输入,调用`reverse_string`函数,并打印反转后的字符串。 |
|
""" |
|
```` |