metadata
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:161
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
widget:
- source_sentence: >-
As per Part II of the PDPA, Personal Data Protection Commission (PDPC) is
the
regulatory body to enforce the provisions of PDPA. The PDPC is empowered
with
broad discretion to issue remedial directions, initiate investigation
inquiries, and impose fines and penalties on the organisations in case of
any
non-compliance of PDPA.
1
If organisations misuse the personal data or hide information concerning
its
collection, use, or disclosure, PDPA states penalties not exceeding
**S$50,000
(approx. $36,000)**.
2
Penalty for hindering a PDPC investigation can lead to a fine of not more
than
**S$100,000 (approx. $72,000)**. The PDPA states that companies are also
liable for their employees’ actions, whether they are aware of them or
not.
3
New amendments to PDPA have enforced increased financial penalties for
breaches of the PDPA up to **10%** of annual gross turnover in Singapore,
or
**S$ 1 million** , whichever is higher.
4
Non-compliance with specific provisions under the PDPA may also constitute
an
offense, for which a fine or a term of **imprisonment** may be imposed.
5
An individual can bring a private civil action against an organisation for
having suffered **loss or damage** directly due to a contravention of the
provisions of the PDPA.
sentences:
- What is the right to notice under the CCPA?
- What are the risks of non-compliance with the PDPA?
- What is the definition of personal data under the PDP Law?
- source_sentence: >-
The DPA requires all data controllers to take appropriate technical and
organisational measures that are necessary to protect data from
unauthorised destruction, negligent loss, unauthorised alteration or
access and any other unauthorised processing of the data.
sentences:
- Which regulatory authority enforces GDPR in France?
- What are the security requirements under the DPA?
- How do PIPEDA and GDPR differ?
- source_sentence: >-
if the data controller or the data processor holds a valid registration
certificate authorizing him or her to store personal data outside Rwanda
sentences:
- What is the difference between GDPR and a Data Protection Act?
- What is the voluntary certification by the CPPA?
- Where is personal data storage outside of Rwanda permitted?
- source_sentence: >-
The PDP law will regulate sensitive personal data as well as other
personal data that may endanger or harm the privacy of the data subject.
sentences:
- What is the material scope of the PDP Law?
- >-
What is the definition of personal information under the DPA in the
Philippines?
- What does Securiti offer to help with data privacy compliance?
- source_sentence: >-
Thailand's PDPA applies to any legal entity collecting, using, or
disclosing a natural (and alive) person's personal data.
sentences:
- Who does the Thailand's PDPA apply to?
- >-
What penalties could an organization face for infringing Kenya's Data
Protection Act?
- What is the CPRA?
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en-v1.5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.5555555555555556
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8333333333333334
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8888888888888888
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5555555555555556
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27777777777777773
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17777777777777778
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.10000000000000002
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.5555555555555556
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8333333333333334
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8888888888888888
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7730002998303461
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7011463844797178
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7011463844797178
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.5
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8333333333333334
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8888888888888888
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27777777777777773
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17777777777777778
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.10000000000000002
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.5
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8333333333333334
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8888888888888888
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.753767166905132
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6746913580246914
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6746913580246914
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.5
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8888888888888888
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9444444444444444
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2962962962962962
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1888888888888889
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.10000000000000002
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.5
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8888888888888888
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9444444444444444
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7698314695487533
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6939814814814815
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6939814814814815
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.5
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8333333333333334
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8888888888888888
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9444444444444444
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27777777777777773
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1777777777777778
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09444444444444446
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.5
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8333333333333334
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8888888888888888
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9444444444444444
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7436864067552591
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6774691358024691
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6799943883277217
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.4444444444444444
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6666666666666666
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8333333333333334
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.4444444444444444
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2222222222222222
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16666666666666669
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.10000000000000002
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.4444444444444444
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6666666666666666
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8333333333333334
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7007609579807462
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6075617283950616
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6075617283950616
name: Cosine Map@100
SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("MugheesAwan11/bge-base-securiti-dataset-1-v6")
sentences = [
"Thailand's PDPA applies to any legal entity collecting, using, or disclosing a natural (and alive) person's personal data.",
"Who does the Thailand's PDPA apply to?",
"What penalties could an organization face for infringing Kenya's Data Protection Act?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.5556 |
cosine_accuracy@3 |
0.8333 |
cosine_accuracy@5 |
0.8889 |
cosine_accuracy@10 |
1.0 |
cosine_precision@1 |
0.5556 |
cosine_precision@3 |
0.2778 |
cosine_precision@5 |
0.1778 |
cosine_precision@10 |
0.1 |
cosine_recall@1 |
0.5556 |
cosine_recall@3 |
0.8333 |
cosine_recall@5 |
0.8889 |
cosine_recall@10 |
1.0 |
cosine_ndcg@10 |
0.773 |
cosine_mrr@10 |
0.7011 |
cosine_map@100 |
0.7011 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.5 |
cosine_accuracy@3 |
0.8333 |
cosine_accuracy@5 |
0.8889 |
cosine_accuracy@10 |
1.0 |
cosine_precision@1 |
0.5 |
cosine_precision@3 |
0.2778 |
cosine_precision@5 |
0.1778 |
cosine_precision@10 |
0.1 |
cosine_recall@1 |
0.5 |
cosine_recall@3 |
0.8333 |
cosine_recall@5 |
0.8889 |
cosine_recall@10 |
1.0 |
cosine_ndcg@10 |
0.7538 |
cosine_mrr@10 |
0.6747 |
cosine_map@100 |
0.6747 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.5 |
cosine_accuracy@3 |
0.8889 |
cosine_accuracy@5 |
0.9444 |
cosine_accuracy@10 |
1.0 |
cosine_precision@1 |
0.5 |
cosine_precision@3 |
0.2963 |
cosine_precision@5 |
0.1889 |
cosine_precision@10 |
0.1 |
cosine_recall@1 |
0.5 |
cosine_recall@3 |
0.8889 |
cosine_recall@5 |
0.9444 |
cosine_recall@10 |
1.0 |
cosine_ndcg@10 |
0.7698 |
cosine_mrr@10 |
0.694 |
cosine_map@100 |
0.694 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.5 |
cosine_accuracy@3 |
0.8333 |
cosine_accuracy@5 |
0.8889 |
cosine_accuracy@10 |
0.9444 |
cosine_precision@1 |
0.5 |
cosine_precision@3 |
0.2778 |
cosine_precision@5 |
0.1778 |
cosine_precision@10 |
0.0944 |
cosine_recall@1 |
0.5 |
cosine_recall@3 |
0.8333 |
cosine_recall@5 |
0.8889 |
cosine_recall@10 |
0.9444 |
cosine_ndcg@10 |
0.7437 |
cosine_mrr@10 |
0.6775 |
cosine_map@100 |
0.68 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.4444 |
cosine_accuracy@3 |
0.6667 |
cosine_accuracy@5 |
0.8333 |
cosine_accuracy@10 |
1.0 |
cosine_precision@1 |
0.4444 |
cosine_precision@3 |
0.2222 |
cosine_precision@5 |
0.1667 |
cosine_precision@10 |
0.1 |
cosine_recall@1 |
0.4444 |
cosine_recall@3 |
0.6667 |
cosine_recall@5 |
0.8333 |
cosine_recall@10 |
1.0 |
cosine_ndcg@10 |
0.7008 |
cosine_mrr@10 |
0.6076 |
cosine_map@100 |
0.6076 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 161 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 5 tokens
- mean: 40.09 tokens
- max: 481 tokens
|
- min: 7 tokens
- mean: 13.01 tokens
- max: 24 tokens
|
- Samples:
positive |
anchor |
The DPA may impose administrative fines of up to €10 million, or up to 2% of worldwide turnover. The DPA may also impose heavier fines up to €20 million, or up to 4% of worldwide turnover. |
What is the penalty for non-compliance with the GDPR in Italy? |
As per the DPA, the data handler must seek consent in writing from the data subject to collect any sensitive personal data. |
What are the consent requirements under the DPA? |
China's cybersecurity laws include the Cybersecurity Law, which governs various aspects of cybersecurity, data protection, and the obligations of organizations to ensure the security of networks and data within China's territory. |
What are the cybersecurity laws in China? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 2
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 2
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
1.0 |
3 |
- |
0.6555 |
0.6686 |
0.6395 |
0.5554 |
0.6469 |
2.0 |
6 |
- |
0.6701 |
0.6821 |
0.6701 |
0.5910 |
0.6951 |
3.0 |
9 |
- |
0.6706 |
0.6940 |
0.6701 |
0.6076 |
0.7025 |
3.3333 |
10 |
5.2757 |
- |
- |
- |
- |
- |
4.0 |
12 |
- |
0.68 |
0.694 |
0.6747 |
0.6076 |
0.7011 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}