MugheesAwan11's picture
Add new SentenceTransformer model.
e2418d9 verified
metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
  - en
library_name: sentence-transformers
license: apache-2.0
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_ndcg@100
  - cosine_mrr@10
  - cosine_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:9000
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: >-
      個人向け資産事業の商品、能力、専門性を維持していくこともできるでしょう」
      シティのプライベート・バンクは、世界で最も富裕な個人、家族、法律事務所向けに資産の
      保護と責任ある蓄積を支援しています。シティ・プライベートバンクの顧客ビジネスの合計 は約 5,500 億ドルに上ります。1 万 3,000
      を超える超富裕層のお客様にサービスを提供して おり、その中には�
    sentences:
      - >-
        How does the Citi Private Bank assist its clients and what is the total
        customer business of Citi Private Bank?
      - What are the effects of opening new card accounts for balance transfer?
      - What are some resources to learn about personal finance and credit?
  - source_sentence: >-
      今後とも一層のお引立てを賜ります よう、お願い申し上げます。 ◆管理会社 ◆代行協会員 シティグループ・ファースト・ シティグループ証券株式会社
      インベストメント・マネジメント・リミテッド 
       目 次 頁 Ⅰ.運用の経過等 1 Ⅱ.直近10期の運用実績 5 Ⅲ.ファンドの経理状況 6 Ⅳ.お知らせ 36 (注1)米ドルの円換算額は、便宜上、2016年4月28日現在
    sentences:
      - What are the specifications of Citi® Savings Account?
      - What are the fees for Citi Miles AheadSM Savings Account?
      - >-
        What are some regulations that might affect my use of your accounts and
        products?
  - source_sentence: >-
      antage® Miles earned from the Miles Boost do not count toward elite-status
      Exclusions qualification or AAdvantage Million MilerSM status. and Citi
      Miles Ahead Savings account owners will not earn a Miles Boost for:
      Restrictions • Purchases made using a different Eligible Card than the one
      associated with your Citi Miles Ahead Savings account; • Purchases
      appearing on an Eligible Card after the Eligible Card or Citi Miles Ahead
      Savings account closes; • Purchases appearing on an Eligible Card billing
      statement if the AMB in your Citi Miles Ahead Savings account was less
      than 10,000 for the calendar month preceding the Eligible Card billing
      statement date. For example, if your Eligible Card billing statement is
      dated July 10, and the AMB in your Citi Miles Ahead Savings account for
      the month of June was nine thousand ($9,000) dollars, you will not earn a
      Miles Boost for purchases appearing on that July 10 billing statement. •
      AAdvantage® Miles
    sentences:
      - What impact will China's tech advancement have on global market?
      - >-
        What are the bonus miles requirements for Citi Miles Ahead Savings
        account?
      - >-
        What features are being phased out at Citibank ATMs between June 1 and
        June 23, 2023?
  - source_sentence: ' collateral movements as agreed Reinvestment of Cash money market funds by the parties. Citi has controls in Citi offers opportunities to reduce • Offers client-friendly dashboard for place to help prevent unauthorized service expenses through the one-stop access to balances and an movements of collateral. Earnings Credit Rate (ECR) Program interface for research and trading. or cash investment capabilities Tri-Party ACA Solutions through Citi Margin Manager. Where subject to an ACA, the pledgor Under a tri-party ACA with Citi, may be allowed to reinvest cash secured parties can choose to 1) allow Earning Credit Rate (ECR) Program collateral given secured party’s the pledgor to withdraw or replace With the ECR Program, Citi assists approval. collateral at their discretion or 2) clients with collateral accounts to require the pledgor to obtain approval earn credits on U.S. dollar deposits to • Displays portfolio information online for asset release. help offset services expenses. Citi’s and identifies eligible investments ECR'
    sentences:
      - >-
        In what situations is Citibank not liable to consumers under the
        agreement?
      - >-
        What services does Citi provide in relation to collateral margin
        management?
      - What are the changes in equity and reserves?
  - source_sentence: |2-
       be sure you had enough cash on hand to pay the fare. Channels, TTS Of course, all of that changed in the blink of an eye with the advent of ride sharing. Now getting from point A to point B is as easy as opening an app on your smart phone. Not only is it simple to book the ride, but once your account is set up, payment is absolutely seamless. No longer do you have to search your wallet for cash. The app knows who you are and the entire transaction happens in the background, without further input on the part of the rider or the driver. Payment is embedded in the experience as part of the natural flow, so you don’t have to think about it. 
       2 Treasury and Trade Solutions The invisible bank 3 This is just one example of the changes happening in today’s hyper-connected world. Artificial intelligence (AI), cloud is poised to deliver the “invisible bank,” where treasury and banking functions meld together. The continuous evolution of banking computing
    sentences:
      - How is Mexico's credit rating affecting its economy?
      - How is a credit card introductory APR beneficial?
      - What is the advent of ride sharing?
model-index:
  - name: SentenceTransformer based on BAAI/bge-base-en-v1.5
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.049
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.115
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.15
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.205
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.049
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.03833333333333333
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.03
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.0205
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.049
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.115
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.15
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.205
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.11801851461489118
            name: Cosine Ndcg@10
          - type: cosine_ndcg@100
            value: 0.17325672881676993
            name: Cosine Ndcg@100
          - type: cosine_mrr@10
            value: 0.09126269841269843
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.1008423759256844
            name: Cosine Map@100

SentenceTransformer based on BAAI/bge-base-en-v1.5

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("MugheesAwan11/bge-base-citi-dataset-9k-1k-e1")
# Run inference
sentences = [
    ' be sure you had enough cash on hand to pay the fare. Channels, TTS Of course, all of that changed in the blink of an eye with the advent of ride sharing. Now getting from point A to point B is as easy as opening an app on your smart phone. Not only is it simple to book the ride, but once your account is set up, payment is absolutely seamless. No longer do you have to search your wallet for cash. The app knows who you are and the entire transaction happens in the background, without further input on the part of the rider or the driver. Payment is embedded in the experience as part of the natural flow, so you don’t have to think about it. \n 2 Treasury and Trade Solutions The invisible bank 3 This is just one example of the changes happening in today’s hyper-connected world. Artificial intelligence (AI), cloud is poised to deliver the “invisible bank,” where treasury and banking functions meld together. The continuous evolution of banking computing',
    'What is the advent of ride sharing?',
    'How is a credit card introductory APR beneficial?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.049
cosine_accuracy@3 0.115
cosine_accuracy@5 0.15
cosine_accuracy@10 0.205
cosine_precision@1 0.049
cosine_precision@3 0.0383
cosine_precision@5 0.03
cosine_precision@10 0.0205
cosine_recall@1 0.049
cosine_recall@3 0.115
cosine_recall@5 0.15
cosine_recall@10 0.205
cosine_ndcg@10 0.118
cosine_ndcg@100 0.1733
cosine_mrr@10 0.0913
cosine_map@100 0.1008

Training Details

Training Dataset

Unnamed Dataset

  • Size: 9,000 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 116 tokens
    • mean: 207.16 tokens
    • max: 288 tokens
    • min: 4 tokens
    • mean: 15.73 tokens
    • max: 37 tokens
  • Samples:
    positive anchor
    ation. US 10-year Treasury yields have risen more than 30 basis points since the Sep 20 FOMC meeting, but just 5 basis points for 2-year notes, steepening the yield curve. Most importantly, the recent rise in rates was a “break out” for yields above post-COVID expansion highs (Figure 4). Figure 4: 10-year US Nominal Treasury yield and 10-year Inflation Indexed US Treasury Source: Haver Analytics as of September 28, 2023. Gray areas are recessions. Past performance is no guarantee of future results. Real results may vary. Citi Global Wealth Investments CIO Strategy Bulletin
    extension How to Save Money Using the Citi Shop Extension Citi.com Save money online shopping Save shopping online How to save money shopping online How to Save Money Shopping Online
    common control of Citigroup. Outside the U.S., investment products and services are provided by other Citigroup affiliates. Investment Management services (including portfolio management) are available through CGMI, CGA, Citibank, N.A. and other affiliated advisory businesses. These Citigroup affiliates, including CGA, will be compensated for the respective investment management, advisory, administrative, distribution and placement services they may provide. International Personal Bank U.S. (“IPB U.S.”) is a business of Citigroup which provides its clients access to a broad array of products and services available through Citigroup, its bank and non-bank affiliates worldwide (collectively, “Citi”). Through IPB U.S. prospects and clients have access to the Citigold® Private Client International, Citigold® International, International Personal, Citi Global Executive Preferred, and Citi Global Executive Account Packages. Investment products and services are made available through Citi Personal Investments International (“CPII”), a business What are the typical assumpitons given in the report?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768
        ],
        "matryoshka_weights": [
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_768_cosine_map@100
0.0355 10 2.0527 -
0.0709 20 2.3092 -
0.1064 30 1.8688 -
0.1418 40 1.8818 -
0.1773 50 1.75 -
0.2128 60 1.8462 -
0.2482 70 1.7534 -
0.2837 80 1.7534 -
0.3191 90 1.7454 -
0.3546 100 1.7037 -
0.3901 110 1.6765 -
0.4255 120 1.5392 -
0.4610 130 1.722 -
0.4965 140 1.5609 -
0.5319 150 1.6001 -
0.5674 160 1.5694 -
0.6028 170 1.7528 -
0.6383 180 1.5393 -
0.6738 190 1.6765 -
0.7092 200 1.4197 -
0.7447 210 1.5231 -
0.7801 220 1.7733 -
0.8156 230 1.5464 -
0.8511 240 1.5321 -
0.8865 250 1.5727 -
0.9220 260 1.5909 -
0.9574 270 1.6485 -
0.9929 280 1.6605 -
1.0 282 - 0.1008
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.14
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}