Muennighoff's picture
Update README.md
bac636e
metadata
tags:
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
  - mteb
model-index:
  - name: SGPT-1.3B-weightedmean-msmarco-specb-bitfit
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: 2d8a100785abf0ae21420d2a55b0c56e3e1ea996
        metrics:
          - type: accuracy
            value: 65.20895522388061
          - type: ap
            value: 29.59212705444778
          - type: f1
            value: 59.97099864321921
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: 80714f8dcf8cefc218ef4f8c5a966dd83f75a0e1
        metrics:
          - type: accuracy
            value: 73.20565
          - type: ap
            value: 67.36680643550963
          - type: f1
            value: 72.90420520325125
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: c379a6705fec24a2493fa68e011692605f44e119
        metrics:
          - type: accuracy
            value: 34.955999999999996
          - type: f1
            value: 34.719324437696955
      - task:
          type: Retrieval
        dataset:
          type: arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: 5b3e3697907184a9b77a3c99ee9ea1a9cbb1e4e3
        metrics:
          - type: map_at_1
            value: 26.101999999999997
          - type: map_at_10
            value: 40.958
          - type: map_at_100
            value: 42.033
          - type: map_at_1000
            value: 42.042
          - type: map_at_3
            value: 36.332
          - type: map_at_5
            value: 38.608
          - type: mrr_at_1
            value: 26.387
          - type: mrr_at_10
            value: 41.051
          - type: mrr_at_100
            value: 42.118
          - type: mrr_at_1000
            value: 42.126999999999995
          - type: mrr_at_3
            value: 36.415
          - type: mrr_at_5
            value: 38.72
          - type: ndcg_at_1
            value: 26.101999999999997
          - type: ndcg_at_10
            value: 49.68
          - type: ndcg_at_100
            value: 54.257999999999996
          - type: ndcg_at_1000
            value: 54.486000000000004
          - type: ndcg_at_3
            value: 39.864
          - type: ndcg_at_5
            value: 43.980000000000004
          - type: precision_at_1
            value: 26.101999999999997
          - type: precision_at_10
            value: 7.781000000000001
          - type: precision_at_100
            value: 0.979
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 16.714000000000002
          - type: precision_at_5
            value: 12.034
          - type: recall_at_1
            value: 26.101999999999997
          - type: recall_at_10
            value: 77.809
          - type: recall_at_100
            value: 97.866
          - type: recall_at_1000
            value: 99.644
          - type: recall_at_3
            value: 50.141999999999996
          - type: recall_at_5
            value: 60.171
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: 0bbdb47bcbe3a90093699aefeed338a0f28a7ee8
        metrics:
          - type: v_measure
            value: 43.384194916953774
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: b73bd54100e5abfa6e3a23dcafb46fe4d2438dc3
        metrics:
          - type: v_measure
            value: 33.70962633433912
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 4d853f94cd57d85ec13805aeeac3ae3e5eb4c49c
        metrics:
          - type: map
            value: 58.133058996870076
          - type: mrr
            value: 72.10922041946972
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: 9ee918f184421b6bd48b78f6c714d86546106103
        metrics:
          - type: cos_sim_pearson
            value: 86.62153841660047
          - type: cos_sim_spearman
            value: 83.01514456843276
          - type: euclidean_pearson
            value: 86.00431518427241
          - type: euclidean_spearman
            value: 83.85552516285783
          - type: manhattan_pearson
            value: 85.83025803351181
          - type: manhattan_spearman
            value: 83.86636878343106
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 44fa15921b4c889113cc5df03dd4901b49161ab7
        metrics:
          - type: accuracy
            value: 82.05844155844156
          - type: f1
            value: 82.0185837884764
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 11d0121201d1f1f280e8cc8f3d98fb9c4d9f9c55
        metrics:
          - type: v_measure
            value: 35.05918333141837
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: c0fab014e1bcb8d3a5e31b2088972a1e01547dc1
        metrics:
          - type: v_measure
            value: 30.71055028830579
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 26.519
          - type: map_at_10
            value: 35.634
          - type: map_at_100
            value: 36.961
          - type: map_at_1000
            value: 37.088
          - type: map_at_3
            value: 32.254
          - type: map_at_5
            value: 34.22
          - type: mrr_at_1
            value: 32.332
          - type: mrr_at_10
            value: 41.168
          - type: mrr_at_100
            value: 41.977
          - type: mrr_at_1000
            value: 42.028999999999996
          - type: mrr_at_3
            value: 38.196999999999996
          - type: mrr_at_5
            value: 40.036
          - type: ndcg_at_1
            value: 32.332
          - type: ndcg_at_10
            value: 41.471000000000004
          - type: ndcg_at_100
            value: 46.955999999999996
          - type: ndcg_at_1000
            value: 49.262
          - type: ndcg_at_3
            value: 35.937999999999995
          - type: ndcg_at_5
            value: 38.702999999999996
          - type: precision_at_1
            value: 32.332
          - type: precision_at_10
            value: 7.7829999999999995
          - type: precision_at_100
            value: 1.29
          - type: precision_at_1000
            value: 0.178
          - type: precision_at_3
            value: 16.834
          - type: precision_at_5
            value: 12.418
          - type: recall_at_1
            value: 26.519
          - type: recall_at_10
            value: 53.190000000000005
          - type: recall_at_100
            value: 76.56500000000001
          - type: recall_at_1000
            value: 91.47800000000001
          - type: recall_at_3
            value: 38.034
          - type: recall_at_5
            value: 45.245999999999995
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 25.356
          - type: map_at_10
            value: 34.596
          - type: map_at_100
            value: 35.714
          - type: map_at_1000
            value: 35.839999999999996
          - type: map_at_3
            value: 32.073
          - type: map_at_5
            value: 33.475
          - type: mrr_at_1
            value: 31.274
          - type: mrr_at_10
            value: 39.592
          - type: mrr_at_100
            value: 40.284
          - type: mrr_at_1000
            value: 40.339999999999996
          - type: mrr_at_3
            value: 37.378
          - type: mrr_at_5
            value: 38.658
          - type: ndcg_at_1
            value: 31.274
          - type: ndcg_at_10
            value: 39.766
          - type: ndcg_at_100
            value: 44.028
          - type: ndcg_at_1000
            value: 46.445
          - type: ndcg_at_3
            value: 35.934
          - type: ndcg_at_5
            value: 37.751000000000005
          - type: precision_at_1
            value: 31.274
          - type: precision_at_10
            value: 7.452
          - type: precision_at_100
            value: 1.217
          - type: precision_at_1000
            value: 0.16999999999999998
          - type: precision_at_3
            value: 17.431
          - type: precision_at_5
            value: 12.306000000000001
          - type: recall_at_1
            value: 25.356
          - type: recall_at_10
            value: 49.344
          - type: recall_at_100
            value: 67.497
          - type: recall_at_1000
            value: 83.372
          - type: recall_at_3
            value: 38.227
          - type: recall_at_5
            value: 43.187999999999995
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 32.759
          - type: map_at_10
            value: 43.937
          - type: map_at_100
            value: 45.004
          - type: map_at_1000
            value: 45.07
          - type: map_at_3
            value: 40.805
          - type: map_at_5
            value: 42.497
          - type: mrr_at_1
            value: 37.367
          - type: mrr_at_10
            value: 47.237
          - type: mrr_at_100
            value: 47.973
          - type: mrr_at_1000
            value: 48.010999999999996
          - type: mrr_at_3
            value: 44.65
          - type: mrr_at_5
            value: 46.050999999999995
          - type: ndcg_at_1
            value: 37.367
          - type: ndcg_at_10
            value: 49.659
          - type: ndcg_at_100
            value: 54.069
          - type: ndcg_at_1000
            value: 55.552
          - type: ndcg_at_3
            value: 44.169000000000004
          - type: ndcg_at_5
            value: 46.726
          - type: precision_at_1
            value: 37.367
          - type: precision_at_10
            value: 8.163
          - type: precision_at_100
            value: 1.133
          - type: precision_at_1000
            value: 0.131
          - type: precision_at_3
            value: 19.707
          - type: precision_at_5
            value: 13.718
          - type: recall_at_1
            value: 32.759
          - type: recall_at_10
            value: 63.341
          - type: recall_at_100
            value: 82.502
          - type: recall_at_1000
            value: 93.259
          - type: recall_at_3
            value: 48.796
          - type: recall_at_5
            value: 54.921
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 18.962
          - type: map_at_10
            value: 25.863000000000003
          - type: map_at_100
            value: 26.817999999999998
          - type: map_at_1000
            value: 26.918
          - type: map_at_3
            value: 23.043
          - type: map_at_5
            value: 24.599
          - type: mrr_at_1
            value: 20.452
          - type: mrr_at_10
            value: 27.301
          - type: mrr_at_100
            value: 28.233000000000004
          - type: mrr_at_1000
            value: 28.310000000000002
          - type: mrr_at_3
            value: 24.539
          - type: mrr_at_5
            value: 26.108999999999998
          - type: ndcg_at_1
            value: 20.452
          - type: ndcg_at_10
            value: 30.354999999999997
          - type: ndcg_at_100
            value: 35.336
          - type: ndcg_at_1000
            value: 37.927
          - type: ndcg_at_3
            value: 24.705
          - type: ndcg_at_5
            value: 27.42
          - type: precision_at_1
            value: 20.452
          - type: precision_at_10
            value: 4.949
          - type: precision_at_100
            value: 0.7799999999999999
          - type: precision_at_1000
            value: 0.104
          - type: precision_at_3
            value: 10.358
          - type: precision_at_5
            value: 7.774
          - type: recall_at_1
            value: 18.962
          - type: recall_at_10
            value: 43.056
          - type: recall_at_100
            value: 66.27300000000001
          - type: recall_at_1000
            value: 85.96000000000001
          - type: recall_at_3
            value: 27.776
          - type: recall_at_5
            value: 34.287
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 11.24
          - type: map_at_10
            value: 18.503
          - type: map_at_100
            value: 19.553
          - type: map_at_1000
            value: 19.689999999999998
          - type: map_at_3
            value: 16.150000000000002
          - type: map_at_5
            value: 17.254
          - type: mrr_at_1
            value: 13.806
          - type: mrr_at_10
            value: 21.939
          - type: mrr_at_100
            value: 22.827
          - type: mrr_at_1000
            value: 22.911
          - type: mrr_at_3
            value: 19.32
          - type: mrr_at_5
            value: 20.558
          - type: ndcg_at_1
            value: 13.806
          - type: ndcg_at_10
            value: 23.383000000000003
          - type: ndcg_at_100
            value: 28.834
          - type: ndcg_at_1000
            value: 32.175
          - type: ndcg_at_3
            value: 18.651999999999997
          - type: ndcg_at_5
            value: 20.505000000000003
          - type: precision_at_1
            value: 13.806
          - type: precision_at_10
            value: 4.714
          - type: precision_at_100
            value: 0.864
          - type: precision_at_1000
            value: 0.13
          - type: precision_at_3
            value: 9.328
          - type: precision_at_5
            value: 6.841
          - type: recall_at_1
            value: 11.24
          - type: recall_at_10
            value: 34.854
          - type: recall_at_100
            value: 59.50299999999999
          - type: recall_at_1000
            value: 83.25
          - type: recall_at_3
            value: 22.02
          - type: recall_at_5
            value: 26.715
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 23.012
          - type: map_at_10
            value: 33.048
          - type: map_at_100
            value: 34.371
          - type: map_at_1000
            value: 34.489
          - type: map_at_3
            value: 29.942999999999998
          - type: map_at_5
            value: 31.602000000000004
          - type: mrr_at_1
            value: 28.104000000000003
          - type: mrr_at_10
            value: 37.99
          - type: mrr_at_100
            value: 38.836
          - type: mrr_at_1000
            value: 38.891
          - type: mrr_at_3
            value: 35.226
          - type: mrr_at_5
            value: 36.693999999999996
          - type: ndcg_at_1
            value: 28.104000000000003
          - type: ndcg_at_10
            value: 39.037
          - type: ndcg_at_100
            value: 44.643
          - type: ndcg_at_1000
            value: 46.939
          - type: ndcg_at_3
            value: 33.784
          - type: ndcg_at_5
            value: 36.126000000000005
          - type: precision_at_1
            value: 28.104000000000003
          - type: precision_at_10
            value: 7.2669999999999995
          - type: precision_at_100
            value: 1.193
          - type: precision_at_1000
            value: 0.159
          - type: precision_at_3
            value: 16.298000000000002
          - type: precision_at_5
            value: 11.684
          - type: recall_at_1
            value: 23.012
          - type: recall_at_10
            value: 52.054
          - type: recall_at_100
            value: 75.622
          - type: recall_at_1000
            value: 90.675
          - type: recall_at_3
            value: 37.282
          - type: recall_at_5
            value: 43.307
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 21.624
          - type: map_at_10
            value: 30.209999999999997
          - type: map_at_100
            value: 31.52
          - type: map_at_1000
            value: 31.625999999999998
          - type: map_at_3
            value: 26.951000000000004
          - type: map_at_5
            value: 28.938999999999997
          - type: mrr_at_1
            value: 26.941
          - type: mrr_at_10
            value: 35.13
          - type: mrr_at_100
            value: 36.15
          - type: mrr_at_1000
            value: 36.204
          - type: mrr_at_3
            value: 32.42
          - type: mrr_at_5
            value: 34.155
          - type: ndcg_at_1
            value: 26.941
          - type: ndcg_at_10
            value: 35.726
          - type: ndcg_at_100
            value: 41.725
          - type: ndcg_at_1000
            value: 44.105
          - type: ndcg_at_3
            value: 30.184
          - type: ndcg_at_5
            value: 33.176
          - type: precision_at_1
            value: 26.941
          - type: precision_at_10
            value: 6.654999999999999
          - type: precision_at_100
            value: 1.1520000000000001
          - type: precision_at_1000
            value: 0.152
          - type: precision_at_3
            value: 14.346
          - type: precision_at_5
            value: 10.868
          - type: recall_at_1
            value: 21.624
          - type: recall_at_10
            value: 47.359
          - type: recall_at_100
            value: 73.436
          - type: recall_at_1000
            value: 89.988
          - type: recall_at_3
            value: 32.34
          - type: recall_at_5
            value: 39.856
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 20.67566666666667
          - type: map_at_10
            value: 28.479333333333333
          - type: map_at_100
            value: 29.612249999999996
          - type: map_at_1000
            value: 29.731166666666663
          - type: map_at_3
            value: 25.884
          - type: map_at_5
            value: 27.298916666666667
          - type: mrr_at_1
            value: 24.402583333333332
          - type: mrr_at_10
            value: 32.07041666666667
          - type: mrr_at_100
            value: 32.95841666666667
          - type: mrr_at_1000
            value: 33.025416666666665
          - type: mrr_at_3
            value: 29.677749999999996
          - type: mrr_at_5
            value: 31.02391666666667
          - type: ndcg_at_1
            value: 24.402583333333332
          - type: ndcg_at_10
            value: 33.326166666666666
          - type: ndcg_at_100
            value: 38.51566666666667
          - type: ndcg_at_1000
            value: 41.13791666666667
          - type: ndcg_at_3
            value: 28.687749999999994
          - type: ndcg_at_5
            value: 30.84766666666667
          - type: precision_at_1
            value: 24.402583333333332
          - type: precision_at_10
            value: 5.943749999999999
          - type: precision_at_100
            value: 1.0098333333333334
          - type: precision_at_1000
            value: 0.14183333333333334
          - type: precision_at_3
            value: 13.211500000000001
          - type: precision_at_5
            value: 9.548416666666668
          - type: recall_at_1
            value: 20.67566666666667
          - type: recall_at_10
            value: 44.245583333333336
          - type: recall_at_100
            value: 67.31116666666667
          - type: recall_at_1000
            value: 85.87841666666665
          - type: recall_at_3
            value: 31.49258333333333
          - type: recall_at_5
            value: 36.93241666666667
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 18.34
          - type: map_at_10
            value: 23.988
          - type: map_at_100
            value: 24.895
          - type: map_at_1000
            value: 24.992
          - type: map_at_3
            value: 21.831
          - type: map_at_5
            value: 23
          - type: mrr_at_1
            value: 20.399
          - type: mrr_at_10
            value: 26.186
          - type: mrr_at_100
            value: 27.017999999999997
          - type: mrr_at_1000
            value: 27.090999999999998
          - type: mrr_at_3
            value: 24.08
          - type: mrr_at_5
            value: 25.230000000000004
          - type: ndcg_at_1
            value: 20.399
          - type: ndcg_at_10
            value: 27.799000000000003
          - type: ndcg_at_100
            value: 32.579
          - type: ndcg_at_1000
            value: 35.209
          - type: ndcg_at_3
            value: 23.684
          - type: ndcg_at_5
            value: 25.521
          - type: precision_at_1
            value: 20.399
          - type: precision_at_10
            value: 4.585999999999999
          - type: precision_at_100
            value: 0.755
          - type: precision_at_1000
            value: 0.105
          - type: precision_at_3
            value: 10.276
          - type: precision_at_5
            value: 7.362
          - type: recall_at_1
            value: 18.34
          - type: recall_at_10
            value: 37.456
          - type: recall_at_100
            value: 59.86
          - type: recall_at_1000
            value: 79.703
          - type: recall_at_3
            value: 26.163999999999998
          - type: recall_at_5
            value: 30.652
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 12.327
          - type: map_at_10
            value: 17.572
          - type: map_at_100
            value: 18.534
          - type: map_at_1000
            value: 18.653
          - type: map_at_3
            value: 15.703
          - type: map_at_5
            value: 16.752
          - type: mrr_at_1
            value: 15.038000000000002
          - type: mrr_at_10
            value: 20.726
          - type: mrr_at_100
            value: 21.61
          - type: mrr_at_1000
            value: 21.695
          - type: mrr_at_3
            value: 18.829
          - type: mrr_at_5
            value: 19.885
          - type: ndcg_at_1
            value: 15.038000000000002
          - type: ndcg_at_10
            value: 21.241
          - type: ndcg_at_100
            value: 26.179000000000002
          - type: ndcg_at_1000
            value: 29.316
          - type: ndcg_at_3
            value: 17.762
          - type: ndcg_at_5
            value: 19.413
          - type: precision_at_1
            value: 15.038000000000002
          - type: precision_at_10
            value: 3.8920000000000003
          - type: precision_at_100
            value: 0.75
          - type: precision_at_1000
            value: 0.11800000000000001
          - type: precision_at_3
            value: 8.351
          - type: precision_at_5
            value: 6.187
          - type: recall_at_1
            value: 12.327
          - type: recall_at_10
            value: 29.342000000000002
          - type: recall_at_100
            value: 51.854
          - type: recall_at_1000
            value: 74.648
          - type: recall_at_3
            value: 19.596
          - type: recall_at_5
            value: 23.899
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 20.594
          - type: map_at_10
            value: 27.878999999999998
          - type: map_at_100
            value: 28.926000000000002
          - type: map_at_1000
            value: 29.041
          - type: map_at_3
            value: 25.668999999999997
          - type: map_at_5
            value: 26.773999999999997
          - type: mrr_at_1
            value: 23.694000000000003
          - type: mrr_at_10
            value: 31.335
          - type: mrr_at_100
            value: 32.218
          - type: mrr_at_1000
            value: 32.298
          - type: mrr_at_3
            value: 29.26
          - type: mrr_at_5
            value: 30.328
          - type: ndcg_at_1
            value: 23.694000000000003
          - type: ndcg_at_10
            value: 32.456
          - type: ndcg_at_100
            value: 37.667
          - type: ndcg_at_1000
            value: 40.571
          - type: ndcg_at_3
            value: 28.283
          - type: ndcg_at_5
            value: 29.986
          - type: precision_at_1
            value: 23.694000000000003
          - type: precision_at_10
            value: 5.448
          - type: precision_at_100
            value: 0.9119999999999999
          - type: precision_at_1000
            value: 0.127
          - type: precision_at_3
            value: 12.717999999999998
          - type: precision_at_5
            value: 8.843
          - type: recall_at_1
            value: 20.594
          - type: recall_at_10
            value: 43.004999999999995
          - type: recall_at_100
            value: 66.228
          - type: recall_at_1000
            value: 87.17099999999999
          - type: recall_at_3
            value: 31.554
          - type: recall_at_5
            value: 35.838
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 20.855999999999998
          - type: map_at_10
            value: 28.372000000000003
          - type: map_at_100
            value: 29.87
          - type: map_at_1000
            value: 30.075000000000003
          - type: map_at_3
            value: 26.054
          - type: map_at_5
            value: 27.128999999999998
          - type: mrr_at_1
            value: 25.494
          - type: mrr_at_10
            value: 32.735
          - type: mrr_at_100
            value: 33.794000000000004
          - type: mrr_at_1000
            value: 33.85
          - type: mrr_at_3
            value: 30.731
          - type: mrr_at_5
            value: 31.897
          - type: ndcg_at_1
            value: 25.494
          - type: ndcg_at_10
            value: 33.385
          - type: ndcg_at_100
            value: 39.436
          - type: ndcg_at_1000
            value: 42.313
          - type: ndcg_at_3
            value: 29.612
          - type: ndcg_at_5
            value: 31.186999999999998
          - type: precision_at_1
            value: 25.494
          - type: precision_at_10
            value: 6.422999999999999
          - type: precision_at_100
            value: 1.383
          - type: precision_at_1000
            value: 0.22399999999999998
          - type: precision_at_3
            value: 13.834
          - type: precision_at_5
            value: 10
          - type: recall_at_1
            value: 20.855999999999998
          - type: recall_at_10
            value: 42.678
          - type: recall_at_100
            value: 70.224
          - type: recall_at_1000
            value: 89.369
          - type: recall_at_3
            value: 31.957
          - type: recall_at_5
            value: 36.026
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 16.519000000000002
          - type: map_at_10
            value: 22.15
          - type: map_at_100
            value: 23.180999999999997
          - type: map_at_1000
            value: 23.291999999999998
          - type: map_at_3
            value: 20.132
          - type: map_at_5
            value: 21.346
          - type: mrr_at_1
            value: 17.93
          - type: mrr_at_10
            value: 23.506
          - type: mrr_at_100
            value: 24.581
          - type: mrr_at_1000
            value: 24.675
          - type: mrr_at_3
            value: 21.503
          - type: mrr_at_5
            value: 22.686
          - type: ndcg_at_1
            value: 17.93
          - type: ndcg_at_10
            value: 25.636
          - type: ndcg_at_100
            value: 30.736
          - type: ndcg_at_1000
            value: 33.841
          - type: ndcg_at_3
            value: 21.546000000000003
          - type: ndcg_at_5
            value: 23.658
          - type: precision_at_1
            value: 17.93
          - type: precision_at_10
            value: 3.993
          - type: precision_at_100
            value: 0.6890000000000001
          - type: precision_at_1000
            value: 0.104
          - type: precision_at_3
            value: 9.057
          - type: precision_at_5
            value: 6.58
          - type: recall_at_1
            value: 16.519000000000002
          - type: recall_at_10
            value: 35.268
          - type: recall_at_100
            value: 58.17
          - type: recall_at_1000
            value: 81.66799999999999
          - type: recall_at_3
            value: 24.165
          - type: recall_at_5
            value: 29.254
      - task:
          type: Retrieval
        dataset:
          type: climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: 392b78eb68c07badcd7c2cd8f39af108375dfcce
        metrics:
          - type: map_at_1
            value: 10.363
          - type: map_at_10
            value: 18.301000000000002
          - type: map_at_100
            value: 20.019000000000002
          - type: map_at_1000
            value: 20.207
          - type: map_at_3
            value: 14.877
          - type: map_at_5
            value: 16.544
          - type: mrr_at_1
            value: 22.866
          - type: mrr_at_10
            value: 34.935
          - type: mrr_at_100
            value: 35.802
          - type: mrr_at_1000
            value: 35.839999999999996
          - type: mrr_at_3
            value: 30.965999999999998
          - type: mrr_at_5
            value: 33.204
          - type: ndcg_at_1
            value: 22.866
          - type: ndcg_at_10
            value: 26.595000000000002
          - type: ndcg_at_100
            value: 33.513999999999996
          - type: ndcg_at_1000
            value: 36.872
          - type: ndcg_at_3
            value: 20.666999999999998
          - type: ndcg_at_5
            value: 22.728
          - type: precision_at_1
            value: 22.866
          - type: precision_at_10
            value: 8.632
          - type: precision_at_100
            value: 1.6119999999999999
          - type: precision_at_1000
            value: 0.22399999999999998
          - type: precision_at_3
            value: 15.504999999999999
          - type: precision_at_5
            value: 12.404
          - type: recall_at_1
            value: 10.363
          - type: recall_at_10
            value: 33.494
          - type: recall_at_100
            value: 57.593
          - type: recall_at_1000
            value: 76.342
          - type: recall_at_3
            value: 19.157
          - type: recall_at_5
            value: 24.637999999999998
      - task:
          type: Retrieval
        dataset:
          type: dbpedia-entity
          name: MTEB DBPedia
          config: default
          split: test
          revision: f097057d03ed98220bc7309ddb10b71a54d667d6
        metrics:
          - type: map_at_1
            value: 7.436
          - type: map_at_10
            value: 14.760000000000002
          - type: map_at_100
            value: 19.206
          - type: map_at_1000
            value: 20.267
          - type: map_at_3
            value: 10.894
          - type: map_at_5
            value: 12.828999999999999
          - type: mrr_at_1
            value: 54.25
          - type: mrr_at_10
            value: 63.769
          - type: mrr_at_100
            value: 64.193
          - type: mrr_at_1000
            value: 64.211
          - type: mrr_at_3
            value: 61.458
          - type: mrr_at_5
            value: 63.096
          - type: ndcg_at_1
            value: 42.875
          - type: ndcg_at_10
            value: 31.507
          - type: ndcg_at_100
            value: 34.559
          - type: ndcg_at_1000
            value: 41.246
          - type: ndcg_at_3
            value: 35.058
          - type: ndcg_at_5
            value: 33.396
          - type: precision_at_1
            value: 54.25
          - type: precision_at_10
            value: 24.45
          - type: precision_at_100
            value: 7.383000000000001
          - type: precision_at_1000
            value: 1.582
          - type: precision_at_3
            value: 38.083
          - type: precision_at_5
            value: 32.6
          - type: recall_at_1
            value: 7.436
          - type: recall_at_10
            value: 19.862
          - type: recall_at_100
            value: 38.981
          - type: recall_at_1000
            value: 61.038000000000004
          - type: recall_at_3
            value: 11.949
          - type: recall_at_5
            value: 15.562000000000001
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 829147f8f75a25f005913200eb5ed41fae320aa1
        metrics:
          - type: accuracy
            value: 46.39
          - type: f1
            value: 42.26424885856703
      - task:
          type: Retrieval
        dataset:
          type: fever
          name: MTEB FEVER
          config: default
          split: test
          revision: 1429cf27e393599b8b359b9b72c666f96b2525f9
        metrics:
          - type: map_at_1
            value: 50.916
          - type: map_at_10
            value: 62.258
          - type: map_at_100
            value: 62.741
          - type: map_at_1000
            value: 62.763000000000005
          - type: map_at_3
            value: 60.01800000000001
          - type: map_at_5
            value: 61.419999999999995
          - type: mrr_at_1
            value: 54.964999999999996
          - type: mrr_at_10
            value: 66.554
          - type: mrr_at_100
            value: 66.96600000000001
          - type: mrr_at_1000
            value: 66.97800000000001
          - type: mrr_at_3
            value: 64.414
          - type: mrr_at_5
            value: 65.77
          - type: ndcg_at_1
            value: 54.964999999999996
          - type: ndcg_at_10
            value: 68.12
          - type: ndcg_at_100
            value: 70.282
          - type: ndcg_at_1000
            value: 70.788
          - type: ndcg_at_3
            value: 63.861999999999995
          - type: ndcg_at_5
            value: 66.216
          - type: precision_at_1
            value: 54.964999999999996
          - type: precision_at_10
            value: 8.998000000000001
          - type: precision_at_100
            value: 1.016
          - type: precision_at_1000
            value: 0.107
          - type: precision_at_3
            value: 25.618000000000002
          - type: precision_at_5
            value: 16.676
          - type: recall_at_1
            value: 50.916
          - type: recall_at_10
            value: 82.04
          - type: recall_at_100
            value: 91.689
          - type: recall_at_1000
            value: 95.34899999999999
          - type: recall_at_3
            value: 70.512
          - type: recall_at_5
            value: 76.29899999999999
      - task:
          type: Retrieval
        dataset:
          type: fiqa
          name: MTEB FiQA2018
          config: default
          split: test
          revision: 41b686a7f28c59bcaaa5791efd47c67c8ebe28be
        metrics:
          - type: map_at_1
            value: 13.568
          - type: map_at_10
            value: 23.264000000000003
          - type: map_at_100
            value: 24.823999999999998
          - type: map_at_1000
            value: 25.013999999999996
          - type: map_at_3
            value: 19.724
          - type: map_at_5
            value: 21.772
          - type: mrr_at_1
            value: 27.315
          - type: mrr_at_10
            value: 35.935
          - type: mrr_at_100
            value: 36.929
          - type: mrr_at_1000
            value: 36.985
          - type: mrr_at_3
            value: 33.591
          - type: mrr_at_5
            value: 34.848
          - type: ndcg_at_1
            value: 27.315
          - type: ndcg_at_10
            value: 29.988
          - type: ndcg_at_100
            value: 36.41
          - type: ndcg_at_1000
            value: 40.184999999999995
          - type: ndcg_at_3
            value: 26.342
          - type: ndcg_at_5
            value: 27.68
          - type: precision_at_1
            value: 27.315
          - type: precision_at_10
            value: 8.565000000000001
          - type: precision_at_100
            value: 1.508
          - type: precision_at_1000
            value: 0.219
          - type: precision_at_3
            value: 17.849999999999998
          - type: precision_at_5
            value: 13.672999999999998
          - type: recall_at_1
            value: 13.568
          - type: recall_at_10
            value: 37.133
          - type: recall_at_100
            value: 61.475
          - type: recall_at_1000
            value: 84.372
          - type: recall_at_3
            value: 24.112000000000002
          - type: recall_at_5
            value: 29.507
      - task:
          type: Retrieval
        dataset:
          type: hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
          revision: 766870b35a1b9ca65e67a0d1913899973551fc6c
        metrics:
          - type: map_at_1
            value: 30.878
          - type: map_at_10
            value: 40.868
          - type: map_at_100
            value: 41.693999999999996
          - type: map_at_1000
            value: 41.775
          - type: map_at_3
            value: 38.56
          - type: map_at_5
            value: 39.947
          - type: mrr_at_1
            value: 61.756
          - type: mrr_at_10
            value: 68.265
          - type: mrr_at_100
            value: 68.671
          - type: mrr_at_1000
            value: 68.694
          - type: mrr_at_3
            value: 66.78399999999999
          - type: mrr_at_5
            value: 67.704
          - type: ndcg_at_1
            value: 61.756
          - type: ndcg_at_10
            value: 49.931
          - type: ndcg_at_100
            value: 53.179
          - type: ndcg_at_1000
            value: 54.94799999999999
          - type: ndcg_at_3
            value: 46.103
          - type: ndcg_at_5
            value: 48.147
          - type: precision_at_1
            value: 61.756
          - type: precision_at_10
            value: 10.163
          - type: precision_at_100
            value: 1.2710000000000001
          - type: precision_at_1000
            value: 0.151
          - type: precision_at_3
            value: 28.179
          - type: precision_at_5
            value: 18.528
          - type: recall_at_1
            value: 30.878
          - type: recall_at_10
            value: 50.817
          - type: recall_at_100
            value: 63.544999999999995
          - type: recall_at_1000
            value: 75.361
          - type: recall_at_3
            value: 42.269
          - type: recall_at_5
            value: 46.32
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 8d743909f834c38949e8323a8a6ce8721ea6c7f4
        metrics:
          - type: accuracy
            value: 64.04799999999999
          - type: ap
            value: 59.185251455339284
          - type: f1
            value: 63.947123181349255
      - task:
          type: Retrieval
        dataset:
          type: msmarco
          name: MTEB MSMARCO
          config: default
          split: validation
          revision: e6838a846e2408f22cf5cc337ebc83e0bcf77849
        metrics:
          - type: map_at_1
            value: 18.9
          - type: map_at_10
            value: 29.748
          - type: map_at_100
            value: 30.976
          - type: map_at_1000
            value: 31.041
          - type: map_at_3
            value: 26.112999999999996
          - type: map_at_5
            value: 28.197
          - type: mrr_at_1
            value: 19.413
          - type: mrr_at_10
            value: 30.322
          - type: mrr_at_100
            value: 31.497000000000003
          - type: mrr_at_1000
            value: 31.555
          - type: mrr_at_3
            value: 26.729000000000003
          - type: mrr_at_5
            value: 28.788999999999998
          - type: ndcg_at_1
            value: 19.413
          - type: ndcg_at_10
            value: 36.048
          - type: ndcg_at_100
            value: 42.152
          - type: ndcg_at_1000
            value: 43.772
          - type: ndcg_at_3
            value: 28.642
          - type: ndcg_at_5
            value: 32.358
          - type: precision_at_1
            value: 19.413
          - type: precision_at_10
            value: 5.785
          - type: precision_at_100
            value: 0.8869999999999999
          - type: precision_at_1000
            value: 0.10300000000000001
          - type: precision_at_3
            value: 12.192
          - type: precision_at_5
            value: 9.189
          - type: recall_at_1
            value: 18.9
          - type: recall_at_10
            value: 55.457
          - type: recall_at_100
            value: 84.09100000000001
          - type: recall_at_1000
            value: 96.482
          - type: recall_at_3
            value: 35.359
          - type: recall_at_5
            value: 44.275
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3
        metrics:
          - type: accuracy
            value: 92.07706338349293
          - type: f1
            value: 91.56680443236652
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: 6299947a7777084cc2d4b64235bf7190381ce755
        metrics:
          - type: accuracy
            value: 71.18559051527589
          - type: f1
            value: 52.42887061726789
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 68.64828513786148
          - type: f1
            value: 66.54281381596097
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 76.04236718224612
          - type: f1
            value: 75.89170458655639
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: dcefc037ef84348e49b0d29109e891c01067226b
        metrics:
          - type: v_measure
            value: 32.0840369055247
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 3cd0e71dfbe09d4de0f9e5ecba43e7ce280959dc
        metrics:
          - type: v_measure
            value: 29.448729560244537
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 31.340856463122375
          - type: mrr
            value: 32.398547669840916
      - task:
          type: Retrieval
        dataset:
          type: nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
          revision: 7eb63cc0c1eb59324d709ebed25fcab851fa7610
        metrics:
          - type: map_at_1
            value: 5.526
          - type: map_at_10
            value: 11.745
          - type: map_at_100
            value: 14.831
          - type: map_at_1000
            value: 16.235
          - type: map_at_3
            value: 8.716
          - type: map_at_5
            value: 10.101
          - type: mrr_at_1
            value: 43.653
          - type: mrr_at_10
            value: 51.06699999999999
          - type: mrr_at_100
            value: 51.881
          - type: mrr_at_1000
            value: 51.912000000000006
          - type: mrr_at_3
            value: 49.02
          - type: mrr_at_5
            value: 50.288999999999994
          - type: ndcg_at_1
            value: 41.949999999999996
          - type: ndcg_at_10
            value: 32.083
          - type: ndcg_at_100
            value: 30.049999999999997
          - type: ndcg_at_1000
            value: 38.661
          - type: ndcg_at_3
            value: 37.940000000000005
          - type: ndcg_at_5
            value: 35.455999999999996
          - type: precision_at_1
            value: 43.344
          - type: precision_at_10
            value: 23.437
          - type: precision_at_100
            value: 7.829999999999999
          - type: precision_at_1000
            value: 2.053
          - type: precision_at_3
            value: 35.501
          - type: precision_at_5
            value: 30.464000000000002
          - type: recall_at_1
            value: 5.526
          - type: recall_at_10
            value: 15.445999999999998
          - type: recall_at_100
            value: 31.179000000000002
          - type: recall_at_1000
            value: 61.578
          - type: recall_at_3
            value: 9.71
          - type: recall_at_5
            value: 12.026
      - task:
          type: Retrieval
        dataset:
          type: nq
          name: MTEB NQ
          config: default
          split: test
          revision: 6062aefc120bfe8ece5897809fb2e53bfe0d128c
        metrics:
          - type: map_at_1
            value: 23.467
          - type: map_at_10
            value: 36.041000000000004
          - type: map_at_100
            value: 37.268
          - type: map_at_1000
            value: 37.322
          - type: map_at_3
            value: 32.09
          - type: map_at_5
            value: 34.414
          - type: mrr_at_1
            value: 26.738
          - type: mrr_at_10
            value: 38.665
          - type: mrr_at_100
            value: 39.64
          - type: mrr_at_1000
            value: 39.681
          - type: mrr_at_3
            value: 35.207
          - type: mrr_at_5
            value: 37.31
          - type: ndcg_at_1
            value: 26.709
          - type: ndcg_at_10
            value: 42.942
          - type: ndcg_at_100
            value: 48.296
          - type: ndcg_at_1000
            value: 49.651
          - type: ndcg_at_3
            value: 35.413
          - type: ndcg_at_5
            value: 39.367999999999995
          - type: precision_at_1
            value: 26.709
          - type: precision_at_10
            value: 7.306
          - type: precision_at_100
            value: 1.0290000000000001
          - type: precision_at_1000
            value: 0.116
          - type: precision_at_3
            value: 16.348
          - type: precision_at_5
            value: 12.068
          - type: recall_at_1
            value: 23.467
          - type: recall_at_10
            value: 61.492999999999995
          - type: recall_at_100
            value: 85.01100000000001
          - type: recall_at_1000
            value: 95.261
          - type: recall_at_3
            value: 41.952
          - type: recall_at_5
            value: 51.105999999999995
      - task:
          type: Retrieval
        dataset:
          type: quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
          revision: 6205996560df11e3a3da9ab4f926788fc30a7db4
        metrics:
          - type: map_at_1
            value: 67.51700000000001
          - type: map_at_10
            value: 81.054
          - type: map_at_100
            value: 81.727
          - type: map_at_1000
            value: 81.75200000000001
          - type: map_at_3
            value: 78.018
          - type: map_at_5
            value: 79.879
          - type: mrr_at_1
            value: 77.52
          - type: mrr_at_10
            value: 84.429
          - type: mrr_at_100
            value: 84.58200000000001
          - type: mrr_at_1000
            value: 84.584
          - type: mrr_at_3
            value: 83.268
          - type: mrr_at_5
            value: 84.013
          - type: ndcg_at_1
            value: 77.53
          - type: ndcg_at_10
            value: 85.277
          - type: ndcg_at_100
            value: 86.80499999999999
          - type: ndcg_at_1000
            value: 87.01
          - type: ndcg_at_3
            value: 81.975
          - type: ndcg_at_5
            value: 83.723
          - type: precision_at_1
            value: 77.53
          - type: precision_at_10
            value: 12.961
          - type: precision_at_100
            value: 1.502
          - type: precision_at_1000
            value: 0.156
          - type: precision_at_3
            value: 35.713
          - type: precision_at_5
            value: 23.574
          - type: recall_at_1
            value: 67.51700000000001
          - type: recall_at_10
            value: 93.486
          - type: recall_at_100
            value: 98.9
          - type: recall_at_1000
            value: 99.92999999999999
          - type: recall_at_3
            value: 84.17999999999999
          - type: recall_at_5
            value: 88.97500000000001
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: b2805658ae38990172679479369a78b86de8c390
        metrics:
          - type: v_measure
            value: 48.225994608749915
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
        metrics:
          - type: v_measure
            value: 53.17635557157765
      - task:
          type: Retrieval
        dataset:
          type: scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
          revision: 5c59ef3e437a0a9651c8fe6fde943e7dce59fba5
        metrics:
          - type: map_at_1
            value: 3.988
          - type: map_at_10
            value: 9.4
          - type: map_at_100
            value: 10.968
          - type: map_at_1000
            value: 11.257
          - type: map_at_3
            value: 7.123
          - type: map_at_5
            value: 8.221
          - type: mrr_at_1
            value: 19.7
          - type: mrr_at_10
            value: 29.098000000000003
          - type: mrr_at_100
            value: 30.247
          - type: mrr_at_1000
            value: 30.318
          - type: mrr_at_3
            value: 26.55
          - type: mrr_at_5
            value: 27.915
          - type: ndcg_at_1
            value: 19.7
          - type: ndcg_at_10
            value: 16.176
          - type: ndcg_at_100
            value: 22.931
          - type: ndcg_at_1000
            value: 28.301
          - type: ndcg_at_3
            value: 16.142
          - type: ndcg_at_5
            value: 13.633999999999999
          - type: precision_at_1
            value: 19.7
          - type: precision_at_10
            value: 8.18
          - type: precision_at_100
            value: 1.8010000000000002
          - type: precision_at_1000
            value: 0.309
          - type: precision_at_3
            value: 15.1
          - type: precision_at_5
            value: 11.74
          - type: recall_at_1
            value: 3.988
          - type: recall_at_10
            value: 16.625
          - type: recall_at_100
            value: 36.61
          - type: recall_at_1000
            value: 62.805
          - type: recall_at_3
            value: 9.168
          - type: recall_at_5
            value: 11.902
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
        metrics:
          - type: cos_sim_pearson
            value: 77.29330379162072
          - type: cos_sim_spearman
            value: 67.22953551111448
          - type: euclidean_pearson
            value: 71.44682700059415
          - type: euclidean_spearman
            value: 66.33178012153247
          - type: manhattan_pearson
            value: 71.46941734657887
          - type: manhattan_spearman
            value: 66.43234359835814
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: fdf84275bb8ce4b49c971d02e84dd1abc677a50f
        metrics:
          - type: cos_sim_pearson
            value: 75.40943196466576
          - type: cos_sim_spearman
            value: 66.59241013465915
          - type: euclidean_pearson
            value: 71.32500540796616
          - type: euclidean_spearman
            value: 67.86667467202591
          - type: manhattan_pearson
            value: 71.48209832089134
          - type: manhattan_spearman
            value: 67.94511626964879
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 1591bfcbe8c69d4bf7fe2a16e2451017832cafb9
        metrics:
          - type: cos_sim_pearson
            value: 77.08302398877518
          - type: cos_sim_spearman
            value: 77.33151317062642
          - type: euclidean_pearson
            value: 76.77020279715008
          - type: euclidean_spearman
            value: 77.13893776083225
          - type: manhattan_pearson
            value: 76.76732290707477
          - type: manhattan_spearman
            value: 77.14500877396631
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: e2125984e7df8b7871f6ae9949cf6b6795e7c54b
        metrics:
          - type: cos_sim_pearson
            value: 77.46886184932168
          - type: cos_sim_spearman
            value: 71.82815265534886
          - type: euclidean_pearson
            value: 75.19783284299076
          - type: euclidean_spearman
            value: 71.36479611710412
          - type: manhattan_pearson
            value: 75.30375233959337
          - type: manhattan_spearman
            value: 71.46280266488021
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: 1cd7298cac12a96a373b6a2f18738bb3e739a9b6
        metrics:
          - type: cos_sim_pearson
            value: 80.093017609484
          - type: cos_sim_spearman
            value: 80.65931167868882
          - type: euclidean_pearson
            value: 80.36786337117047
          - type: euclidean_spearman
            value: 81.30521389642827
          - type: manhattan_pearson
            value: 80.37922433220973
          - type: manhattan_spearman
            value: 81.30496664496285
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 360a0b2dff98700d09e634a01e1cc1624d3e42cd
        metrics:
          - type: cos_sim_pearson
            value: 77.98998347238742
          - type: cos_sim_spearman
            value: 78.91151365939403
          - type: euclidean_pearson
            value: 76.40510899217841
          - type: euclidean_spearman
            value: 76.8551459824213
          - type: manhattan_pearson
            value: 76.3986079603294
          - type: manhattan_spearman
            value: 76.8848053254288
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
        metrics:
          - type: cos_sim_pearson
            value: 85.63510653472044
          - type: cos_sim_spearman
            value: 86.98674844768605
          - type: euclidean_pearson
            value: 85.205080538809
          - type: euclidean_spearman
            value: 85.53630494151886
          - type: manhattan_pearson
            value: 85.48612469885626
          - type: manhattan_spearman
            value: 85.81741413931921
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 66.7257987615171
          - type: cos_sim_spearman
            value: 67.30387805090024
          - type: euclidean_pearson
            value: 69.46877227885867
          - type: euclidean_spearman
            value: 69.33161798704344
          - type: manhattan_pearson
            value: 69.82773311626424
          - type: manhattan_spearman
            value: 69.57199940498796
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: 8913289635987208e6e7c72789e4be2fe94b6abd
        metrics:
          - type: cos_sim_pearson
            value: 79.37322139418472
          - type: cos_sim_spearman
            value: 77.5887175717799
          - type: euclidean_pearson
            value: 78.23006410562164
          - type: euclidean_spearman
            value: 77.18470385673044
          - type: manhattan_pearson
            value: 78.40868369362455
          - type: manhattan_spearman
            value: 77.36675823897656
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: 56a6d0140cf6356659e2a7c1413286a774468d44
        metrics:
          - type: map
            value: 77.21233007730808
          - type: mrr
            value: 93.0502386139641
      - task:
          type: Retrieval
        dataset:
          type: scifact
          name: MTEB SciFact
          config: default
          split: test
          revision: a75ae049398addde9b70f6b268875f5cbce99089
        metrics:
          - type: map_at_1
            value: 54.567
          - type: map_at_10
            value: 63.653000000000006
          - type: map_at_100
            value: 64.282
          - type: map_at_1000
            value: 64.31099999999999
          - type: map_at_3
            value: 60.478
          - type: map_at_5
            value: 62.322
          - type: mrr_at_1
            value: 56.99999999999999
          - type: mrr_at_10
            value: 64.759
          - type: mrr_at_100
            value: 65.274
          - type: mrr_at_1000
            value: 65.301
          - type: mrr_at_3
            value: 62.333000000000006
          - type: mrr_at_5
            value: 63.817
          - type: ndcg_at_1
            value: 56.99999999999999
          - type: ndcg_at_10
            value: 68.28699999999999
          - type: ndcg_at_100
            value: 70.98400000000001
          - type: ndcg_at_1000
            value: 71.695
          - type: ndcg_at_3
            value: 62.656
          - type: ndcg_at_5
            value: 65.523
          - type: precision_at_1
            value: 56.99999999999999
          - type: precision_at_10
            value: 9.232999999999999
          - type: precision_at_100
            value: 1.0630000000000002
          - type: precision_at_1000
            value: 0.11199999999999999
          - type: precision_at_3
            value: 24.221999999999998
          - type: precision_at_5
            value: 16.333000000000002
          - type: recall_at_1
            value: 54.567
          - type: recall_at_10
            value: 81.45599999999999
          - type: recall_at_100
            value: 93.5
          - type: recall_at_1000
            value: 99
          - type: recall_at_3
            value: 66.228
          - type: recall_at_5
            value: 73.489
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: 5a8256d0dff9c4bd3be3ba3e67e4e70173f802ea
        metrics:
          - type: cos_sim_accuracy
            value: 99.74455445544554
          - type: cos_sim_ap
            value: 92.57836032673468
          - type: cos_sim_f1
            value: 87.0471464019851
          - type: cos_sim_precision
            value: 86.4039408866995
          - type: cos_sim_recall
            value: 87.7
          - type: dot_accuracy
            value: 99.56039603960396
          - type: dot_ap
            value: 82.47233353407186
          - type: dot_f1
            value: 76.78207739307537
          - type: dot_precision
            value: 78.21576763485477
          - type: dot_recall
            value: 75.4
          - type: euclidean_accuracy
            value: 99.73069306930694
          - type: euclidean_ap
            value: 91.70507666665775
          - type: euclidean_f1
            value: 86.26262626262626
          - type: euclidean_precision
            value: 87.14285714285714
          - type: euclidean_recall
            value: 85.39999999999999
          - type: manhattan_accuracy
            value: 99.73861386138614
          - type: manhattan_ap
            value: 91.96809459281754
          - type: manhattan_f1
            value: 86.6
          - type: manhattan_precision
            value: 86.6
          - type: manhattan_recall
            value: 86.6
          - type: max_accuracy
            value: 99.74455445544554
          - type: max_ap
            value: 92.57836032673468
          - type: max_f1
            value: 87.0471464019851
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 70a89468f6dccacc6aa2b12a6eac54e74328f235
        metrics:
          - type: v_measure
            value: 60.85593925770172
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: d88009ab563dd0b16cfaf4436abaf97fa3550cf0
        metrics:
          - type: v_measure
            value: 32.356772998237496
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: ef807ea29a75ec4f91b50fd4191cb4ee4589a9f9
        metrics:
          - type: map
            value: 49.320607035290735
          - type: mrr
            value: 50.09196481622952
      - task:
          type: Summarization
        dataset:
          type: mteb/summeval
          name: MTEB SummEval
          config: default
          split: test
          revision: 8753c2788d36c01fc6f05d03fe3f7268d63f9122
        metrics:
          - type: cos_sim_pearson
            value: 31.17573968015504
          - type: cos_sim_spearman
            value: 30.43371643155132
          - type: dot_pearson
            value: 30.164319483092743
          - type: dot_spearman
            value: 29.207082242868754
      - task:
          type: Retrieval
        dataset:
          type: trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
          revision: 2c8041b2c07a79b6f7ba8fe6acc72e5d9f92d217
        metrics:
          - type: map_at_1
            value: 0.22100000000000003
          - type: map_at_10
            value: 1.7229999999999999
          - type: map_at_100
            value: 9.195
          - type: map_at_1000
            value: 21.999
          - type: map_at_3
            value: 0.6479999999999999
          - type: map_at_5
            value: 0.964
          - type: mrr_at_1
            value: 86
          - type: mrr_at_10
            value: 90.667
          - type: mrr_at_100
            value: 90.858
          - type: mrr_at_1000
            value: 90.858
          - type: mrr_at_3
            value: 90.667
          - type: mrr_at_5
            value: 90.667
          - type: ndcg_at_1
            value: 82
          - type: ndcg_at_10
            value: 72.98
          - type: ndcg_at_100
            value: 52.868
          - type: ndcg_at_1000
            value: 46.541
          - type: ndcg_at_3
            value: 80.39699999999999
          - type: ndcg_at_5
            value: 76.303
          - type: precision_at_1
            value: 86
          - type: precision_at_10
            value: 75.8
          - type: precision_at_100
            value: 53.5
          - type: precision_at_1000
            value: 20.946
          - type: precision_at_3
            value: 85.333
          - type: precision_at_5
            value: 79.2
          - type: recall_at_1
            value: 0.22100000000000003
          - type: recall_at_10
            value: 1.9109999999999998
          - type: recall_at_100
            value: 12.437
          - type: recall_at_1000
            value: 43.606
          - type: recall_at_3
            value: 0.681
          - type: recall_at_5
            value: 1.023
      - task:
          type: Retrieval
        dataset:
          type: webis-touche2020
          name: MTEB Touche2020
          config: default
          split: test
          revision: 527b7d77e16e343303e68cb6af11d6e18b9f7b3b
        metrics:
          - type: map_at_1
            value: 2.5
          - type: map_at_10
            value: 9.568999999999999
          - type: map_at_100
            value: 15.653
          - type: map_at_1000
            value: 17.188
          - type: map_at_3
            value: 5.335999999999999
          - type: map_at_5
            value: 6.522
          - type: mrr_at_1
            value: 34.694
          - type: mrr_at_10
            value: 49.184
          - type: mrr_at_100
            value: 50.512
          - type: mrr_at_1000
            value: 50.512
          - type: mrr_at_3
            value: 46.259
          - type: mrr_at_5
            value: 48.299
          - type: ndcg_at_1
            value: 30.612000000000002
          - type: ndcg_at_10
            value: 24.45
          - type: ndcg_at_100
            value: 35.870999999999995
          - type: ndcg_at_1000
            value: 47.272999999999996
          - type: ndcg_at_3
            value: 28.528
          - type: ndcg_at_5
            value: 25.768
          - type: precision_at_1
            value: 34.694
          - type: precision_at_10
            value: 21.429000000000002
          - type: precision_at_100
            value: 7.265000000000001
          - type: precision_at_1000
            value: 1.504
          - type: precision_at_3
            value: 29.252
          - type: precision_at_5
            value: 24.898
          - type: recall_at_1
            value: 2.5
          - type: recall_at_10
            value: 15.844
          - type: recall_at_100
            value: 45.469
          - type: recall_at_1000
            value: 81.148
          - type: recall_at_3
            value: 6.496
          - type: recall_at_5
            value: 8.790000000000001
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
        metrics:
          - type: accuracy
            value: 68.7272
          - type: ap
            value: 13.156450706152686
          - type: f1
            value: 52.814703437064395
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: 62146448f05be9e52a36b8ee9936447ea787eede
        metrics:
          - type: accuracy
            value: 55.6677985285795
          - type: f1
            value: 55.9373937514999
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 091a54f9a36281ce7d6590ec8c75dd485e7e01d4
        metrics:
          - type: v_measure
            value: 40.05809562275603
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 82.76807534124099
          - type: cos_sim_ap
            value: 62.37052608803734
          - type: cos_sim_f1
            value: 59.077414934916646
          - type: cos_sim_precision
            value: 52.07326892109501
          - type: cos_sim_recall
            value: 68.25857519788919
          - type: dot_accuracy
            value: 80.56267509089825
          - type: dot_ap
            value: 54.75349561321037
          - type: dot_f1
            value: 54.75483794372552
          - type: dot_precision
            value: 49.77336499028707
          - type: dot_recall
            value: 60.844327176781
          - type: euclidean_accuracy
            value: 82.476008821601
          - type: euclidean_ap
            value: 61.17417554210511
          - type: euclidean_f1
            value: 57.80318696022382
          - type: euclidean_precision
            value: 53.622207176709544
          - type: euclidean_recall
            value: 62.69129287598945
          - type: manhattan_accuracy
            value: 82.48792990403528
          - type: manhattan_ap
            value: 61.044816292966544
          - type: manhattan_f1
            value: 58.03033951360462
          - type: manhattan_precision
            value: 53.36581045172719
          - type: manhattan_recall
            value: 63.58839050131926
          - type: max_accuracy
            value: 82.76807534124099
          - type: max_ap
            value: 62.37052608803734
          - type: max_f1
            value: 59.077414934916646
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 87.97881010594946
          - type: cos_sim_ap
            value: 83.78748636891035
          - type: cos_sim_f1
            value: 75.94113995691386
          - type: cos_sim_precision
            value: 72.22029307590805
          - type: cos_sim_recall
            value: 80.06621496766245
          - type: dot_accuracy
            value: 85.69294058291614
          - type: dot_ap
            value: 78.15363722278026
          - type: dot_f1
            value: 72.08894926888564
          - type: dot_precision
            value: 67.28959487419075
          - type: dot_recall
            value: 77.62550046196489
          - type: euclidean_accuracy
            value: 87.73625179493149
          - type: euclidean_ap
            value: 83.19012184470559
          - type: euclidean_f1
            value: 75.5148064623461
          - type: euclidean_precision
            value: 72.63352535381551
          - type: euclidean_recall
            value: 78.6341238065907
          - type: manhattan_accuracy
            value: 87.74013272790779
          - type: manhattan_ap
            value: 83.23305405113403
          - type: manhattan_f1
            value: 75.63960775639607
          - type: manhattan_precision
            value: 72.563304569246
          - type: manhattan_recall
            value: 78.9882968894364
          - type: max_accuracy
            value: 87.97881010594946
          - type: max_ap
            value: 83.78748636891035
          - type: max_f1
            value: 75.94113995691386

SGPT-1.3B-weightedmean-msmarco-specb-bitfit

Usage

For usage instructions, refer to our codebase: https://github.com/Muennighoff/sgpt

Evaluation Results

For eval results, refer to the eval folder or our paper: https://arxiv.org/abs/2202.08904

Training

The model was trained with the parameters:

DataLoader:

torch.utils.data.dataloader.DataLoader of length 62398 with parameters:

{'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

Loss:

sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss with parameters:

{'scale': 20.0, 'similarity_fct': 'cos_sim'}

Parameters of the fit()-Method:

{
    "epochs": 10,
    "evaluation_steps": 0,
    "evaluator": "NoneType",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'transformers.optimization.AdamW'>",
    "optimizer_params": {
        "lr": 0.0002
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 1000,
    "weight_decay": 0.01
}

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 300, 'do_lower_case': False}) with Transformer model: GPTNeoModel 
  (1): Pooling({'word_embedding_dimension': 2048, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False})
)

Citing & Authors

@article{muennighoff2022sgpt,
  title={SGPT: GPT Sentence Embeddings for Semantic Search},
  author={Muennighoff, Niklas},
  journal={arXiv preprint arXiv:2202.08904},
  year={2022}
}