|
import gradio as gr |
|
import joblib |
|
from gensim.models import Word2Vec |
|
import numpy as np |
|
|
|
|
|
classifier = joblib.load("random_forest_model.pkl") |
|
word2vec_model = Word2Vec.load("word2vec_model.bin") |
|
label_encoder = joblib.load("label_encoder.pkl") |
|
|
|
def predict_comment(comment): |
|
tokenized_comment = comment.split() |
|
comment_vector = get_average_word2vec(tokenized_comment, word2vec_model, 100) |
|
comment_vector = comment_vector.reshape(1, -1) |
|
prediction = classifier.predict(comment_vector) |
|
return "Based on Experience" if label_encoder.inverse_transform(prediction)[0] == 1 else "Not Based on Experience" |
|
|
|
def get_average_word2vec(comment, model, num_features): |
|
feature_vec = np.zeros((num_features,), dtype="float32") |
|
n_words = 0 |
|
for word in comment: |
|
if word in model.wv.key_to_index: |
|
n_words += 1 |
|
feature_vec = np.add(feature_vec, model.wv[word]) |
|
if n_words > 0: |
|
feature_vec = np.divide(feature_vec, n_words) |
|
return feature_vec |
|
|
|
|
|
iface = gr.Interface(fn=predict_comment, inputs="text", outputs="text") |
|
iface.launch() |
|
|