MrVJavlon4002 commited on
Commit
27ac1c9
1 Parent(s): b2ee403

Create main.py

Browse files
Files changed (1) hide show
  1. main.py +31 -0
main.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import joblib
3
+ from gensim.models import Word2Vec
4
+ import numpy as np
5
+
6
+ # Load the models
7
+ classifier = joblib.load("random_forest_model.pkl")
8
+ word2vec_model = Word2Vec.load("word2vec_model.bin")
9
+ label_encoder = joblib.load("label_encoder.pkl")
10
+
11
+ def predict_comment(comment):
12
+ tokenized_comment = comment.split()
13
+ comment_vector = get_average_word2vec(tokenized_comment, word2vec_model, 100)
14
+ comment_vector = comment_vector.reshape(1, -1)
15
+ prediction = classifier.predict(comment_vector)
16
+ return "Based on Experience" if label_encoder.inverse_transform(prediction)[0] == 1 else "Not Based on Experience"
17
+
18
+ def get_average_word2vec(comment, model, num_features):
19
+ feature_vec = np.zeros((num_features,), dtype="float32")
20
+ n_words = 0
21
+ for word in comment:
22
+ if word in model.wv.key_to_index:
23
+ n_words += 1
24
+ feature_vec = np.add(feature_vec, model.wv[word])
25
+ if n_words > 0:
26
+ feature_vec = np.divide(feature_vec, n_words)
27
+ return feature_vec
28
+
29
+ # Gradio interface
30
+ iface = gr.Interface(fn=predict_comment, inputs="text", outputs="text")
31
+ iface.launch()