MrVJavlon4002
commited on
Commit
•
27ac1c9
1
Parent(s):
b2ee403
Create main.py
Browse files
main.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import joblib
|
3 |
+
from gensim.models import Word2Vec
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# Load the models
|
7 |
+
classifier = joblib.load("random_forest_model.pkl")
|
8 |
+
word2vec_model = Word2Vec.load("word2vec_model.bin")
|
9 |
+
label_encoder = joblib.load("label_encoder.pkl")
|
10 |
+
|
11 |
+
def predict_comment(comment):
|
12 |
+
tokenized_comment = comment.split()
|
13 |
+
comment_vector = get_average_word2vec(tokenized_comment, word2vec_model, 100)
|
14 |
+
comment_vector = comment_vector.reshape(1, -1)
|
15 |
+
prediction = classifier.predict(comment_vector)
|
16 |
+
return "Based on Experience" if label_encoder.inverse_transform(prediction)[0] == 1 else "Not Based on Experience"
|
17 |
+
|
18 |
+
def get_average_word2vec(comment, model, num_features):
|
19 |
+
feature_vec = np.zeros((num_features,), dtype="float32")
|
20 |
+
n_words = 0
|
21 |
+
for word in comment:
|
22 |
+
if word in model.wv.key_to_index:
|
23 |
+
n_words += 1
|
24 |
+
feature_vec = np.add(feature_vec, model.wv[word])
|
25 |
+
if n_words > 0:
|
26 |
+
feature_vec = np.divide(feature_vec, n_words)
|
27 |
+
return feature_vec
|
28 |
+
|
29 |
+
# Gradio interface
|
30 |
+
iface = gr.Interface(fn=predict_comment, inputs="text", outputs="text")
|
31 |
+
iface.launch()
|