distilbert-base-multilingual-cased_regression_finetuned_news_all

This model is a fine-tuned version of distilbert/distilbert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8565
  • Mse: 0.8565
  • Mae: 0.5566
  • Rmse: 0.9255
  • Mape: inf
  • R Squared: 0.5011

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 2175
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Mse Mae Rmse Mape R Squared
0.9354 1.0 21755 0.9298 0.9298 0.5985 0.9643 inf 0.4584
0.8432 2.0 43510 0.8988 0.8988 0.5756 0.9481 inf 0.4764
0.8033 3.0 65265 0.8810 0.8810 0.5685 0.9386 inf 0.4868
0.8119 4.0 87020 0.8778 0.8778 0.5623 0.9369 inf 0.4887
0.7401 5.0 108775 0.8565 0.8565 0.5566 0.9255 inf 0.5011
0.6964 6.0 130530 0.8877 0.8877 0.5587 0.9422 inf 0.4829
0.6213 7.0 152285 0.8918 0.8918 0.5607 0.9444 inf 0.4805

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.1
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
24
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Mou11209203/distilbert-base-multilingual-cased_regression_finetuned_news_all

Finetuned
(224)
this model