distilbert-base-multilingual-cased_regression_finetuned_mobile01_all

This model is a fine-tuned version of distilbert/distilbert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8877
  • Mse: 0.8877
  • Mae: 0.5973
  • Rmse: 0.9422
  • Mape: inf
  • R Squared: 0.5145

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 778
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Mse Mae Rmse Mape R Squared
1.0906 1.0 7789 1.0449 1.0449 0.7032 1.0222 inf 0.4285
0.9156 2.0 15578 0.9369 0.9369 0.6340 0.9679 inf 0.4875
0.6858 3.0 23367 0.9153 0.9153 0.6189 0.9567 inf 0.4993
1.0272 4.0 31156 0.8877 0.8877 0.5973 0.9422 inf 0.5145
0.7273 5.0 38945 0.8928 0.8928 0.6004 0.9449 inf 0.5117
0.8211 6.0 46734 0.8880 0.8880 0.5936 0.9423 inf 0.5143

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.1
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
19
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Mou11209203/distilbert-base-multilingual-cased_regression_finetuned_mobile01_all

Finetuned
(232)
this model