metadata
license: apache-2.0
base_model: keeeeenw/MicroLlama
tags:
- generated_from_trainer
model-index:
- name: medusa-microllama_305M_stage2
results: []
medusa-microllama_305M_stage2
This model is a fine-tuned version of keeeeenw/MicroLlama on the None dataset. It achieves the following results on the evaluation set:
- Loss: 3.5262
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 40
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.6913 | 0.0244 | 40 | 4.7578 |
4.8782 | 0.0489 | 80 | 4.8017 |
4.642 | 0.0733 | 120 | 4.7973 |
4.4601 | 0.0978 | 160 | 4.7589 |
4.4806 | 0.1222 | 200 | 4.6955 |
4.4856 | 0.1467 | 240 | 4.6196 |
4.4671 | 0.1711 | 280 | 4.5750 |
4.3228 | 0.1955 | 320 | 4.5563 |
4.1184 | 0.2200 | 360 | 4.5274 |
3.9986 | 0.2444 | 400 | 4.5031 |
4.2603 | 0.2689 | 440 | 4.4637 |
4.1344 | 0.2933 | 480 | 4.4349 |
4.1973 | 0.3178 | 520 | 4.4106 |
4.3961 | 0.3422 | 560 | 4.4202 |
4.1814 | 0.3666 | 600 | 4.3732 |
4.1685 | 0.3911 | 640 | 4.3877 |
4.3108 | 0.4155 | 680 | 4.3262 |
4.6294 | 0.4400 | 720 | 4.3108 |
4.3653 | 0.4644 | 760 | 4.2880 |
4.1505 | 0.4888 | 800 | 4.2835 |
3.8278 | 0.5133 | 840 | 4.2623 |
4.3567 | 0.5377 | 880 | 4.2253 |
4.2782 | 0.5622 | 920 | 4.1919 |
4.1025 | 0.5866 | 960 | 4.1846 |
4.2819 | 0.6111 | 1000 | 4.1637 |
3.9919 | 0.6355 | 1040 | 4.1323 |
4.1932 | 0.6599 | 1080 | 4.1017 |
4.0949 | 0.6844 | 1120 | 4.1085 |
3.7266 | 0.7088 | 1160 | 4.0668 |
4.1255 | 0.7333 | 1200 | 4.0500 |
4.3707 | 0.7577 | 1240 | 4.0207 |
4.1965 | 0.7822 | 1280 | 4.0065 |
3.4585 | 0.8066 | 1320 | 3.9363 |
3.7242 | 0.8310 | 1360 | 3.8893 |
3.9228 | 0.8555 | 1400 | 3.8569 |
4.2051 | 0.8799 | 1440 | 3.8412 |
3.6795 | 0.9044 | 1480 | 3.8245 |
3.2453 | 0.9288 | 1520 | 3.8132 |
3.5941 | 0.9533 | 1560 | 3.7907 |
3.6246 | 0.9777 | 1600 | 3.7573 |
2.8637 | 1.0021 | 1640 | 3.7530 |
2.8495 | 1.0266 | 1680 | 3.7741 |
3.0246 | 1.0510 | 1720 | 3.7690 |
2.99 | 1.0755 | 1760 | 3.7464 |
3.1902 | 1.0999 | 1800 | 3.7347 |
2.8099 | 1.1244 | 1840 | 3.7278 |
2.7652 | 1.1488 | 1880 | 3.7245 |
2.6362 | 1.1732 | 1920 | 3.7034 |
2.8562 | 1.1977 | 1960 | 3.6871 |
3.1712 | 1.2221 | 2000 | 3.6786 |
2.7405 | 1.2466 | 2040 | 3.6709 |
2.734 | 1.2710 | 2080 | 3.6404 |
3.1788 | 1.2954 | 2120 | 3.6310 |
2.9609 | 1.3199 | 2160 | 3.6176 |
3.0737 | 1.3443 | 2200 | 3.6136 |
2.751 | 1.3688 | 2240 | 3.5960 |
2.7105 | 1.3932 | 2280 | 3.5872 |
2.8158 | 1.4177 | 2320 | 3.5848 |
3.03 | 1.4421 | 2360 | 3.5679 |
2.8122 | 1.4665 | 2400 | 3.5718 |
2.5581 | 1.4910 | 2440 | 3.5568 |
2.9845 | 1.5154 | 2480 | 3.5496 |
2.83 | 1.5399 | 2520 | 3.5440 |
2.7004 | 1.5643 | 2560 | 3.5402 |
2.8271 | 1.5888 | 2600 | 3.5406 |
2.5315 | 1.6132 | 2640 | 3.5316 |
2.6001 | 1.6376 | 2680 | 3.5346 |
2.4959 | 1.6621 | 2720 | 3.5298 |
2.9174 | 1.6865 | 2760 | 3.5304 |
2.7219 | 1.7110 | 2800 | 3.5286 |
2.5395 | 1.7354 | 2840 | 3.5279 |
2.7464 | 1.7599 | 2880 | 3.5284 |
2.7532 | 1.7843 | 2920 | 3.5274 |
2.6472 | 1.8087 | 2960 | 3.5270 |
2.8263 | 1.8332 | 3000 | 3.5268 |
2.916 | 1.8576 | 3040 | 3.5263 |
3.0202 | 1.8821 | 3080 | 3.5262 |
2.7152 | 1.9065 | 3120 | 3.5261 |
2.7628 | 1.9310 | 3160 | 3.5261 |
2.783 | 1.9554 | 3200 | 3.5263 |
3.2587 | 1.9798 | 3240 | 3.5262 |
Framework versions
- Transformers 4.43.0
- Pytorch 2.3.1
- Datasets 2.15.0
- Tokenizers 0.19.1