metadata
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1115700
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: nomic-ai/nomic-embed-text-v1.5
datasets: []
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: Ndege mwenye mdomo mrefu katikati ya ndege.
sentences:
- Panya anayekimbia juu ya gurudumu.
- Mtu anashindana katika mashindano ya mbio.
- Ndege anayeruka.
- source_sentence: >-
Msichana mchanga mwenye nywele nyeusi anakabili kamera na kushikilia mfuko
wa karatasi wakati amevaa shati la machungwa na mabawa ya kipepeo yenye
rangi nyingi.
sentences:
- Mwanamke mzee anakataa kupigwa picha.
- mtu akila na mvulana mdogo kwenye kijia cha jiji
- Msichana mchanga anakabili kamera.
- source_sentence: >-
Wanawake na watoto wameketi nje katika kivuli wakati kikundi cha watoto
wadogo wameketi ndani katika kivuli.
sentences:
- Mwanamke na watoto na kukaa chini.
- Mwanamke huyo anakimbia.
- Watu wanasafiri kwa baiskeli.
- source_sentence: >-
Mtoto mdogo anaruka mikononi mwa mwanamke aliyevalia suti nyeusi ya
kuogelea akiwa kwenye dimbwi.
sentences:
- >-
Mtoto akiruka mikononi mwa mwanamke aliyevalia suti ya kuogelea kwenye
dimbwi.
- Someone is holding oranges and walking
- Mama na binti wakinunua viatu.
- source_sentence: >-
Mwanamume na mwanamke wachanga waliovaa mikoba wanaweka au kuondoa kitu
kutoka kwenye mti mweupe wa zamani, huku watu wengine wamesimama au
wameketi nyuma.
sentences:
- tai huruka
- mwanamume na mwanamke wenye mikoba
- Wanaume wawili wameketi karibu na mwanamke.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on nomic-ai/nomic-embed-text-v1.5
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 768
type: sts-test-768
metrics:
- type: pearson_cosine
value: 0.6944960057464138
name: Pearson Cosine
- type: spearman_cosine
value: 0.6872396378196957
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7086043588614903
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7136479613274518
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7084460037709435
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7128357831285198
name: Spearman Euclidean
- type: pearson_dot
value: 0.481902874304561
name: Pearson Dot
- type: spearman_dot
value: 0.46588918379526945
name: Spearman Dot
- type: pearson_max
value: 0.7086043588614903
name: Pearson Max
- type: spearman_max
value: 0.7136479613274518
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 512
type: sts-test-512
metrics:
- type: pearson_cosine
value: 0.6925787246105148
name: Pearson Cosine
- type: spearman_cosine
value: 0.6859479129419207
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7087290093387656
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7127968133455542
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7088805484816247
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7123606046721803
name: Spearman Euclidean
- type: pearson_dot
value: 0.4684333245586192
name: Pearson Dot
- type: spearman_dot
value: 0.45257836578849003
name: Spearman Dot
- type: pearson_max
value: 0.7088805484816247
name: Pearson Max
- type: spearman_max
value: 0.7127968133455542
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 256
type: sts-test-256
metrics:
- type: pearson_cosine
value: 0.6876956481856266
name: Pearson Cosine
- type: spearman_cosine
value: 0.6814892249857147
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7083882582081078
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7097524143994903
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7094190252305796
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7104287347206688
name: Spearman Euclidean
- type: pearson_dot
value: 0.4438925722484721
name: Pearson Dot
- type: spearman_dot
value: 0.4255299982188107
name: Spearman Dot
- type: pearson_max
value: 0.7094190252305796
name: Pearson Max
- type: spearman_max
value: 0.7104287347206688
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 128
type: sts-test-128
metrics:
- type: pearson_cosine
value: 0.6708560165075523
name: Pearson Cosine
- type: spearman_cosine
value: 0.6669935075512006
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7041961281711793
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7000807688296651
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7055061381768357
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7022686907818495
name: Spearman Euclidean
- type: pearson_dot
value: 0.37855771167572094
name: Pearson Dot
- type: spearman_dot
value: 0.35930717422088765
name: Spearman Dot
- type: pearson_max
value: 0.7055061381768357
name: Pearson Max
- type: spearman_max
value: 0.7022686907818495
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 64
type: sts-test-64
metrics:
- type: pearson_cosine
value: 0.6533817775144477
name: Pearson Cosine
- type: spearman_cosine
value: 0.6523997361414113
name: Spearman Cosine
- type: pearson_manhattan
value: 0.6919834348567717
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6857245312336051
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.6950438027503257
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6899151458827059
name: Spearman Euclidean
- type: pearson_dot
value: 0.33502302384042637
name: Pearson Dot
- type: spearman_dot
value: 0.3097469345046609
name: Spearman Dot
- type: pearson_max
value: 0.6950438027503257
name: Pearson Max
- type: spearman_max
value: 0.6899151458827059
name: Spearman Max
SentenceTransformer based on nomic-ai/nomic-embed-text-v1.5
This is a sentence-transformers model finetuned from nomic-ai/nomic-embed-text-v1.5 on the Mollel/swahili-n_li-triplet-swh-eng dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/nomic-embed-text-v1.5
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Mollel/swahili-n_li-triplet-swh-eng
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("Mollel/MultiLinguSwahili-nomic-embed-text-v1.5-nli-matryoshka")
sentences = [
'Mwanamume na mwanamke wachanga waliovaa mikoba wanaweka au kuondoa kitu kutoka kwenye mti mweupe wa zamani, huku watu wengine wamesimama au wameketi nyuma.',
'mwanamume na mwanamke wenye mikoba',
'tai huruka',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.6945 |
spearman_cosine |
0.6872 |
pearson_manhattan |
0.7086 |
spearman_manhattan |
0.7136 |
pearson_euclidean |
0.7084 |
spearman_euclidean |
0.7128 |
pearson_dot |
0.4819 |
spearman_dot |
0.4659 |
pearson_max |
0.7086 |
spearman_max |
0.7136 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.6926 |
spearman_cosine |
0.6859 |
pearson_manhattan |
0.7087 |
spearman_manhattan |
0.7128 |
pearson_euclidean |
0.7089 |
spearman_euclidean |
0.7124 |
pearson_dot |
0.4684 |
spearman_dot |
0.4526 |
pearson_max |
0.7089 |
spearman_max |
0.7128 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.6877 |
spearman_cosine |
0.6815 |
pearson_manhattan |
0.7084 |
spearman_manhattan |
0.7098 |
pearson_euclidean |
0.7094 |
spearman_euclidean |
0.7104 |
pearson_dot |
0.4439 |
spearman_dot |
0.4255 |
pearson_max |
0.7094 |
spearman_max |
0.7104 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.6709 |
spearman_cosine |
0.667 |
pearson_manhattan |
0.7042 |
spearman_manhattan |
0.7001 |
pearson_euclidean |
0.7055 |
spearman_euclidean |
0.7023 |
pearson_dot |
0.3786 |
spearman_dot |
0.3593 |
pearson_max |
0.7055 |
spearman_max |
0.7023 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.6534 |
spearman_cosine |
0.6524 |
pearson_manhattan |
0.692 |
spearman_manhattan |
0.6857 |
pearson_euclidean |
0.695 |
spearman_euclidean |
0.6899 |
pearson_dot |
0.335 |
spearman_dot |
0.3097 |
pearson_max |
0.695 |
spearman_max |
0.6899 |
Training Details
Training Dataset
Mollel/swahili-n_li-triplet-swh-eng
- Dataset: Mollel/swahili-n_li-triplet-swh-eng
- Size: 1,115,700 training samples
- Columns:
anchor
, positive
, and negative
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
negative |
type |
string |
string |
string |
details |
- min: 7 tokens
- mean: 15.18 tokens
- max: 80 tokens
|
- min: 5 tokens
- mean: 18.53 tokens
- max: 52 tokens
|
- min: 5 tokens
- mean: 17.8 tokens
- max: 53 tokens
|
- Samples:
anchor |
positive |
negative |
A person on a horse jumps over a broken down airplane. |
A person is outdoors, on a horse. |
A person is at a diner, ordering an omelette. |
Mtu aliyepanda farasi anaruka juu ya ndege iliyovunjika. |
Mtu yuko nje, juu ya farasi. |
Mtu yuko kwenye mkahawa, akiagiza omelette. |
Children smiling and waving at camera |
There are children present |
The kids are frowning |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Evaluation Dataset
Mollel/swahili-n_li-triplet-swh-eng
- Dataset: Mollel/swahili-n_li-triplet-swh-eng
- Size: 13,168 evaluation samples
- Columns:
anchor
, positive
, and negative
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
negative |
type |
string |
string |
string |
details |
- min: 6 tokens
- mean: 26.43 tokens
- max: 94 tokens
|
- min: 5 tokens
- mean: 13.37 tokens
- max: 65 tokens
|
- min: 5 tokens
- mean: 14.7 tokens
- max: 54 tokens
|
- Samples:
anchor |
positive |
negative |
Two women are embracing while holding to go packages. |
Two woman are holding packages. |
The men are fighting outside a deli. |
Wanawake wawili wanakumbatiana huku wakishikilia vifurushi vya kwenda. |
Wanawake wawili wanashikilia vifurushi. |
Wanaume hao wanapigana nje ya duka la vyakula vitamu. |
Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink. |
Two kids in numbered jerseys wash their hands. |
Two kids in jackets walk to school. |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 24
per_device_eval_batch_size
: 24
learning_rate
: 2e-05
num_train_epochs
: 1
warmup_ratio
: 0.1
bf16
: True
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
prediction_loss_only
: True
per_device_train_batch_size
: 24
per_device_eval_batch_size
: 24
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 1
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch |
Step |
Training Loss |
sts-test-128_spearman_cosine |
sts-test-256_spearman_cosine |
sts-test-512_spearman_cosine |
sts-test-64_spearman_cosine |
sts-test-768_spearman_cosine |
0.0043 |
100 |
10.0627 |
- |
- |
- |
- |
- |
0.0086 |
200 |
8.2355 |
- |
- |
- |
- |
- |
0.0129 |
300 |
6.7233 |
- |
- |
- |
- |
- |
0.0172 |
400 |
6.5832 |
- |
- |
- |
- |
- |
0.0215 |
500 |
6.7512 |
- |
- |
- |
- |
- |
0.0258 |
600 |
6.7634 |
- |
- |
- |
- |
- |
0.0301 |
700 |
6.5592 |
- |
- |
- |
- |
- |
0.0344 |
800 |
5.0689 |
- |
- |
- |
- |
- |
0.0387 |
900 |
4.7079 |
- |
- |
- |
- |
- |
0.0430 |
1000 |
4.6359 |
- |
- |
- |
- |
- |
0.0473 |
1100 |
4.4513 |
- |
- |
- |
- |
- |
0.0516 |
1200 |
4.2328 |
- |
- |
- |
- |
- |
0.0559 |
1300 |
3.7454 |
- |
- |
- |
- |
- |
0.0602 |
1400 |
3.9198 |
- |
- |
- |
- |
- |
0.0645 |
1500 |
4.0727 |
- |
- |
- |
- |
- |
0.0688 |
1600 |
3.8923 |
- |
- |
- |
- |
- |
0.0731 |
1700 |
3.8137 |
- |
- |
- |
- |
- |
0.0774 |
1800 |
4.1512 |
- |
- |
- |
- |
- |
0.0817 |
1900 |
4.1304 |
- |
- |
- |
- |
- |
0.0860 |
2000 |
4.0195 |
- |
- |
- |
- |
- |
0.0903 |
2100 |
3.6836 |
- |
- |
- |
- |
- |
0.0946 |
2200 |
2.9968 |
- |
- |
- |
- |
- |
0.0990 |
2300 |
2.8909 |
- |
- |
- |
- |
- |
0.1033 |
2400 |
3.0884 |
- |
- |
- |
- |
- |
0.1076 |
2500 |
3.3081 |
- |
- |
- |
- |
- |
0.1119 |
2600 |
3.6266 |
- |
- |
- |
- |
- |
0.1162 |
2700 |
4.3754 |
- |
- |
- |
- |
- |
0.1205 |
2800 |
4.0218 |
- |
- |
- |
- |
- |
0.1248 |
2900 |
3.7167 |
- |
- |
- |
- |
- |
0.1291 |
3000 |
3.4815 |
- |
- |
- |
- |
- |
0.1334 |
3100 |
3.6446 |
- |
- |
- |
- |
- |
0.1377 |
3200 |
3.44 |
- |
- |
- |
- |
- |
0.1420 |
3300 |
3.6725 |
- |
- |
- |
- |
- |
0.1463 |
3400 |
3.4699 |
- |
- |
- |
- |
- |
0.1506 |
3500 |
3.076 |
- |
- |
- |
- |
- |
0.1549 |
3600 |
3.1179 |
- |
- |
- |
- |
- |
0.1592 |
3700 |
3.1704 |
- |
- |
- |
- |
- |
0.1635 |
3800 |
3.4614 |
- |
- |
- |
- |
- |
0.1678 |
3900 |
4.1157 |
- |
- |
- |
- |
- |
0.1721 |
4000 |
4.1584 |
- |
- |
- |
- |
- |
0.1764 |
4100 |
4.5602 |
- |
- |
- |
- |
- |
0.1807 |
4200 |
3.6875 |
- |
- |
- |
- |
- |
0.1850 |
4300 |
4.1521 |
- |
- |
- |
- |
- |
0.1893 |
4400 |
3.5475 |
- |
- |
- |
- |
- |
0.1936 |
4500 |
3.4036 |
- |
- |
- |
- |
- |
0.1979 |
4600 |
3.0564 |
- |
- |
- |
- |
- |
0.2022 |
4700 |
3.7761 |
- |
- |
- |
- |
- |
0.2065 |
4800 |
3.6857 |
- |
- |
- |
- |
- |
0.2108 |
4900 |
3.3534 |
- |
- |
- |
- |
- |
0.2151 |
5000 |
4.1137 |
- |
- |
- |
- |
- |
0.2194 |
5100 |
3.5239 |
- |
- |
- |
- |
- |
0.2237 |
5200 |
4.1297 |
- |
- |
- |
- |
- |
0.2280 |
5300 |
3.5339 |
- |
- |
- |
- |
- |
0.2323 |
5400 |
3.9294 |
- |
- |
- |
- |
- |
0.2366 |
5500 |
3.717 |
- |
- |
- |
- |
- |
0.2409 |
5600 |
3.3346 |
- |
- |
- |
- |
- |
0.2452 |
5700 |
4.0495 |
- |
- |
- |
- |
- |
0.2495 |
5800 |
3.7869 |
- |
- |
- |
- |
- |
0.2538 |
5900 |
3.9533 |
- |
- |
- |
- |
- |
0.2581 |
6000 |
4.1135 |
- |
- |
- |
- |
- |
0.2624 |
6100 |
3.6655 |
- |
- |
- |
- |
- |
0.2667 |
6200 |
3.9111 |
- |
- |
- |
- |
- |
0.2710 |
6300 |
3.8582 |
- |
- |
- |
- |
- |
0.2753 |
6400 |
3.7712 |
- |
- |
- |
- |
- |
0.2796 |
6500 |
3.6536 |
- |
- |
- |
- |
- |
0.2839 |
6600 |
3.4516 |
- |
- |
- |
- |
- |
0.2882 |
6700 |
3.7151 |
- |
- |
- |
- |
- |
0.2925 |
6800 |
3.7659 |
- |
- |
- |
- |
- |
0.2969 |
6900 |
3.3159 |
- |
- |
- |
- |
- |
0.3012 |
7000 |
3.5753 |
- |
- |
- |
- |
- |
0.3055 |
7100 |
4.2095 |
- |
- |
- |
- |
- |
0.3098 |
7200 |
3.718 |
- |
- |
- |
- |
- |
0.3141 |
7300 |
4.0709 |
- |
- |
- |
- |
- |
0.3184 |
7400 |
3.8079 |
- |
- |
- |
- |
- |
0.3227 |
7500 |
3.3735 |
- |
- |
- |
- |
- |
0.3270 |
7600 |
3.7303 |
- |
- |
- |
- |
- |
0.3313 |
7700 |
3.2693 |
- |
- |
- |
- |
- |
0.3356 |
7800 |
3.6564 |
- |
- |
- |
- |
- |
0.3399 |
7900 |
3.6702 |
- |
- |
- |
- |
- |
0.3442 |
8000 |
3.7274 |
- |
- |
- |
- |
- |
0.3485 |
8100 |
3.8536 |
- |
- |
- |
- |
- |
0.3528 |
8200 |
3.9516 |
- |
- |
- |
- |
- |
0.3571 |
8300 |
3.7351 |
- |
- |
- |
- |
- |
0.3614 |
8400 |
3.649 |
- |
- |
- |
- |
- |
0.3657 |
8500 |
3.5913 |
- |
- |
- |
- |
- |
0.3700 |
8600 |
3.7733 |
- |
- |
- |
- |
- |
0.3743 |
8700 |
3.6359 |
- |
- |
- |
- |
- |
0.3786 |
8800 |
4.2983 |
- |
- |
- |
- |
- |
0.3829 |
8900 |
3.6692 |
- |
- |
- |
- |
- |
0.3872 |
9000 |
3.7309 |
- |
- |
- |
- |
- |
0.3915 |
9100 |
3.8886 |
- |
- |
- |
- |
- |
0.3958 |
9200 |
3.8999 |
- |
- |
- |
- |
- |
0.4001 |
9300 |
3.5528 |
- |
- |
- |
- |
- |
0.4044 |
9400 |
3.6309 |
- |
- |
- |
- |
- |
0.4087 |
9500 |
4.2475 |
- |
- |
- |
- |
- |
0.4130 |
9600 |
3.793 |
- |
- |
- |
- |
- |
0.4173 |
9700 |
3.6575 |
- |
- |
- |
- |
- |
0.4216 |
9800 |
3.84 |
- |
- |
- |
- |
- |
0.4259 |
9900 |
3.3721 |
- |
- |
- |
- |
- |
0.4302 |
10000 |
4.3743 |
- |
- |
- |
- |
- |
0.4345 |
10100 |
3.5054 |
- |
- |
- |
- |
- |
0.4388 |
10200 |
3.54 |
- |
- |
- |
- |
- |
0.4431 |
10300 |
3.6197 |
- |
- |
- |
- |
- |
0.4474 |
10400 |
3.7567 |
- |
- |
- |
- |
- |
0.4517 |
10500 |
3.9814 |
- |
- |
- |
- |
- |
0.4560 |
10600 |
3.6277 |
- |
- |
- |
- |
- |
0.4603 |
10700 |
3.5071 |
- |
- |
- |
- |
- |
0.4646 |
10800 |
3.8348 |
- |
- |
- |
- |
- |
0.4689 |
10900 |
3.8674 |
- |
- |
- |
- |
- |
0.4732 |
11000 |
3.0325 |
- |
- |
- |
- |
- |
0.4775 |
11100 |
3.7262 |
- |
- |
- |
- |
- |
0.4818 |
11200 |
3.6921 |
- |
- |
- |
- |
- |
0.4861 |
11300 |
3.4946 |
- |
- |
- |
- |
- |
0.4904 |
11400 |
3.7541 |
- |
- |
- |
- |
- |
0.4948 |
11500 |
3.6751 |
- |
- |
- |
- |
- |
0.4991 |
11600 |
3.8765 |
- |
- |
- |
- |
- |
0.5034 |
11700 |
3.5058 |
- |
- |
- |
- |
- |
0.5077 |
11800 |
3.5135 |
- |
- |
- |
- |
- |
0.5120 |
11900 |
3.8052 |
- |
- |
- |
- |
- |
0.5163 |
12000 |
3.3015 |
- |
- |
- |
- |
- |
0.5206 |
12100 |
3.5389 |
- |
- |
- |
- |
- |
0.5249 |
12200 |
3.5226 |
- |
- |
- |
- |
- |
0.5292 |
12300 |
3.6715 |
- |
- |
- |
- |
- |
0.5335 |
12400 |
3.2256 |
- |
- |
- |
- |
- |
0.5378 |
12500 |
3.3447 |
- |
- |
- |
- |
- |
0.5421 |
12600 |
3.6315 |
- |
- |
- |
- |
- |
0.5464 |
12700 |
3.8674 |
- |
- |
- |
- |
- |
0.5507 |
12800 |
3.4066 |
- |
- |
- |
- |
- |
0.5550 |
12900 |
3.7356 |
- |
- |
- |
- |
- |
0.5593 |
13000 |
3.5742 |
- |
- |
- |
- |
- |
0.5636 |
13100 |
3.7676 |
- |
- |
- |
- |
- |
0.5679 |
13200 |
3.7907 |
- |
- |
- |
- |
- |
0.5722 |
13300 |
3.8089 |
- |
- |
- |
- |
- |
0.5765 |
13400 |
3.4742 |
- |
- |
- |
- |
- |
0.5808 |
13500 |
3.6536 |
- |
- |
- |
- |
- |
0.5851 |
13600 |
3.7736 |
- |
- |
- |
- |
- |
0.5894 |
13700 |
3.9072 |
- |
- |
- |
- |
- |
0.5937 |
13800 |
3.7386 |
- |
- |
- |
- |
- |
0.5980 |
13900 |
3.3387 |
- |
- |
- |
- |
- |
0.6023 |
14000 |
3.5509 |
- |
- |
- |
- |
- |
0.6066 |
14100 |
3.7056 |
- |
- |
- |
- |
- |
0.6109 |
14200 |
3.7283 |
- |
- |
- |
- |
- |
0.6152 |
14300 |
3.7301 |
- |
- |
- |
- |
- |
0.6195 |
14400 |
3.8027 |
- |
- |
- |
- |
- |
0.6238 |
14500 |
3.5606 |
- |
- |
- |
- |
- |
0.6281 |
14600 |
3.9467 |
- |
- |
- |
- |
- |
0.6324 |
14700 |
3.3394 |
- |
- |
- |
- |
- |
0.6367 |
14800 |
4.1254 |
- |
- |
- |
- |
- |
0.6410 |
14900 |
3.7121 |
- |
- |
- |
- |
- |
0.6453 |
15000 |
3.9167 |
- |
- |
- |
- |
- |
0.6496 |
15100 |
3.8084 |
- |
- |
- |
- |
- |
0.6539 |
15200 |
3.7794 |
- |
- |
- |
- |
- |
0.6582 |
15300 |
3.7664 |
- |
- |
- |
- |
- |
0.6625 |
15400 |
3.4378 |
- |
- |
- |
- |
- |
0.6668 |
15500 |
3.6632 |
- |
- |
- |
- |
- |
0.6711 |
15600 |
3.8493 |
- |
- |
- |
- |
- |
0.6754 |
15700 |
4.1475 |
- |
- |
- |
- |
- |
0.6797 |
15800 |
3.5782 |
- |
- |
- |
- |
- |
0.6840 |
15900 |
3.4341 |
- |
- |
- |
- |
- |
0.6883 |
16000 |
3.3295 |
- |
- |
- |
- |
- |
0.6927 |
16100 |
3.8165 |
- |
- |
- |
- |
- |
0.6970 |
16200 |
3.9702 |
- |
- |
- |
- |
- |
0.7013 |
16300 |
3.6555 |
- |
- |
- |
- |
- |
0.7056 |
16400 |
3.6946 |
- |
- |
- |
- |
- |
0.7099 |
16500 |
3.8027 |
- |
- |
- |
- |
- |
0.7142 |
16600 |
3.4523 |
- |
- |
- |
- |
- |
0.7185 |
16700 |
3.461 |
- |
- |
- |
- |
- |
0.7228 |
16800 |
3.4403 |
- |
- |
- |
- |
- |
0.7271 |
16900 |
3.6398 |
- |
- |
- |
- |
- |
0.7314 |
17000 |
3.8443 |
- |
- |
- |
- |
- |
0.7357 |
17100 |
3.6012 |
- |
- |
- |
- |
- |
0.7400 |
17200 |
3.6645 |
- |
- |
- |
- |
- |
0.7443 |
17300 |
3.4899 |
- |
- |
- |
- |
- |
0.7486 |
17400 |
3.7186 |
- |
- |
- |
- |
- |
0.7529 |
17500 |
3.6199 |
- |
- |
- |
- |
- |
0.7572 |
17600 |
4.4274 |
- |
- |
- |
- |
- |
0.7615 |
17700 |
4.0262 |
- |
- |
- |
- |
- |
0.7658 |
17800 |
3.9325 |
- |
- |
- |
- |
- |
0.7701 |
17900 |
3.6338 |
- |
- |
- |
- |
- |
0.7744 |
18000 |
3.6136 |
- |
- |
- |
- |
- |
0.7787 |
18100 |
3.4514 |
- |
- |
- |
- |
- |
0.7830 |
18200 |
3.4427 |
- |
- |
- |
- |
- |
0.7873 |
18300 |
3.3601 |
- |
- |
- |
- |
- |
0.7916 |
18400 |
3.313 |
- |
- |
- |
- |
- |
0.7959 |
18500 |
3.4062 |
- |
- |
- |
- |
- |
0.8002 |
18600 |
3.098 |
- |
- |
- |
- |
- |
0.8045 |
18700 |
3.183 |
- |
- |
- |
- |
- |
0.8088 |
18800 |
3.1482 |
- |
- |
- |
- |
- |
0.8131 |
18900 |
3.0122 |
- |
- |
- |
- |
- |
0.8174 |
19000 |
3.0828 |
- |
- |
- |
- |
- |
0.8217 |
19100 |
3.063 |
- |
- |
- |
- |
- |
0.8260 |
19200 |
2.9688 |
- |
- |
- |
- |
- |
0.8303 |
19300 |
3.0425 |
- |
- |
- |
- |
- |
0.8346 |
19400 |
3.2018 |
- |
- |
- |
- |
- |
0.8389 |
19500 |
2.9111 |
- |
- |
- |
- |
- |
0.8432 |
19600 |
2.9516 |
- |
- |
- |
- |
- |
0.8475 |
19700 |
2.9115 |
- |
- |
- |
- |
- |
0.8518 |
19800 |
2.9323 |
- |
- |
- |
- |
- |
0.8561 |
19900 |
2.8753 |
- |
- |
- |
- |
- |
0.8604 |
20000 |
2.8344 |
- |
- |
- |
- |
- |
0.8647 |
20100 |
2.7665 |
- |
- |
- |
- |
- |
0.8690 |
20200 |
2.7732 |
- |
- |
- |
- |
- |
0.8733 |
20300 |
2.8622 |
- |
- |
- |
- |
- |
0.8776 |
20400 |
2.8749 |
- |
- |
- |
- |
- |
0.8819 |
20500 |
2.8534 |
- |
- |
- |
- |
- |
0.8863 |
20600 |
2.9254 |
- |
- |
- |
- |
- |
0.8906 |
20700 |
2.7366 |
- |
- |
- |
- |
- |
0.8949 |
20800 |
2.7287 |
- |
- |
- |
- |
- |
0.8992 |
20900 |
2.9469 |
- |
- |
- |
- |
- |
0.9035 |
21000 |
2.9052 |
- |
- |
- |
- |
- |
0.9078 |
21100 |
2.7256 |
- |
- |
- |
- |
- |
0.9121 |
21200 |
2.8469 |
- |
- |
- |
- |
- |
0.9164 |
21300 |
2.6626 |
- |
- |
- |
- |
- |
0.9207 |
21400 |
2.6796 |
- |
- |
- |
- |
- |
0.9250 |
21500 |
2.6927 |
- |
- |
- |
- |
- |
0.9293 |
21600 |
2.7125 |
- |
- |
- |
- |
- |
0.9336 |
21700 |
2.6734 |
- |
- |
- |
- |
- |
0.9379 |
21800 |
2.7199 |
- |
- |
- |
- |
- |
0.9422 |
21900 |
2.6635 |
- |
- |
- |
- |
- |
0.9465 |
22000 |
2.5218 |
- |
- |
- |
- |
- |
0.9508 |
22100 |
2.7595 |
- |
- |
- |
- |
- |
0.9551 |
22200 |
2.6821 |
- |
- |
- |
- |
- |
0.9594 |
22300 |
2.6578 |
- |
- |
- |
- |
- |
0.9637 |
22400 |
2.568 |
- |
- |
- |
- |
- |
0.9680 |
22500 |
2.5527 |
- |
- |
- |
- |
- |
0.9723 |
22600 |
2.6857 |
- |
- |
- |
- |
- |
0.9766 |
22700 |
2.6637 |
- |
- |
- |
- |
- |
0.9809 |
22800 |
2.6311 |
- |
- |
- |
- |
- |
0.9852 |
22900 |
2.4635 |
- |
- |
- |
- |
- |
0.9895 |
23000 |
2.6239 |
- |
- |
- |
- |
- |
0.9938 |
23100 |
2.6873 |
- |
- |
- |
- |
- |
0.9981 |
23200 |
2.5138 |
- |
- |
- |
- |
- |
1.0 |
23244 |
- |
0.6670 |
0.6815 |
0.6859 |
0.6524 |
0.6872 |
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.0.1
- Transformers: 4.40.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.29.3
- Datasets: 2.19.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}