MohamedRashad's picture
Update README.md
50f3bf5 verified
|
raw
history blame
2.61 kB
---
library_name: transformers
license: llama3
language:
- ar
- en
pipeline_tag: text-generation
model_name: Arabic ORPO 8B chat
model_type: llama3
quantized_by: MohamedRashad
---
# The AWQ version
This is the AWQ version of [MohamedRashad/Arabic-Orpo-Llama-3-8B-Instruct](https://huggingface.co./MohamedRashad/Arabic-Orpo-Llama-3-8B-Instruct) for the enthusiasts
<center>
<img src="https://cdn-uploads.huggingface.co/production/uploads/6116d0584ef9fdfbf45dc4d9/4VqGvuqtWgLOTavTV861j.png">
</center>
## How to use, you ask ?
First, Update your packages
```shell
pip3 install --upgrade autoawq transformers
```
Now, Copy and Run
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
model_name_or_path = "MohamedRashad/Arabic-Orpo-Llama-3-8B-Instruct-AWQ"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(
model_name_or_path,
attn_implementation="flash_attention_2", # disable if you have problems with flash attention 2
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
device_map="auto"
)
# Using the text streamer to stream output one token at a time
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "مرحبا"},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
generation_params = {
"do_sample": True,
"temperature": 0.6,
"top_p": 0.9,
"top_k": 40,
"max_new_tokens": 1024,
"eos_token_id": terminators,
}
# Generate streamed output, visible one token at a time
generation_output = model.generate(
tokens,
streamer=streamer,
**generation_params
)
# Generation without a streamer, which will include the prompt in the output
generation_output = model.generate(
tokens,
**generation_params
)
# Get the tokens from the output, decode them, print them
token_output = generation_output[0]
text_output = tokenizer.decode(token_output)
print("model.generate output: ", text_output)
# Inference is also possible via Transformers' pipeline
from transformers import pipeline
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
**generation_params
)
pipe_output = pipe(prompt_template)[0]['generated_text']
print("pipeline output: ", pipe_output)
```