Vortex
Collection
ModelCloud optimized and validated quants that pass/meet strict quality assurance on multiple benchmarks.
•
17 items
•
Updated
•
7
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "ModelCloud/QwQ-32B-Preview-gguf-vortex-v1"
filename = "QwQ-32B-Preview-Q4_K_M.gguf"
tokenizer = AutoTokenizer.from_pretrained(model_id, gguf_file=filename)
model = AutoModelForCausalLM.from_pretrained(model_id, gguf_file=filename, device_map="cuda", torch_dtype=torch.float16)
messages = [
{"role": "system", "content": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."},
{"role": "user", "content": "How can I design a data structure in C++ to store the top 5 largest integer numbers?"},
]
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(input_ids=input_tensor.to(model.device), max_new_tokens=512)
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
print(result)