このモデルはcl-tohoku/bert-large-japanese-v2をファインチューニングして、固有表現抽出(NER)に用いれるようにしたものです。
このモデルはcl-tohoku/bert-large-japanese-v2を Wikipediaを用いた日本語の固有表現抽出データセット(ストックマーク社、https://github.com/stockmarkteam/ner-wikipedia-dataset )を用いてファインチューニングしたものです。
固有表現抽出(NER)タスクに用いることができます。
This model is fine-tuned model for Named-Entity-Recognition(NER) which is based on cl-tohoku/bert-large-japanese-v2
This model is fine-tuned by using Wikipedia dataset.
You could use this model for NER tasks.
モデルの精度 accuracy of model
全体:0.8620626488367833
precision | recall | f1-score | support | |
---|---|---|---|---|
その他の組織名 | 0.80 | 0.78 | 0.79 | 238 |
イベント名 | 0.82 | 0.88 | 0.85 | 215 |
人名 | 0.92 | 0.95 | 0.93 | 549 |
地名 | 0.90 | 0.89 | 0.89 | 446 |
政治的組織名 | 0.86 | 0.91 | 0.89 | 263 |
施設名 | 0.86 | 0.91 | 0.88 | 241 |
法人名 | 0.88 | 0.89 | 0.88 | 487 |
製品名 | 0.62 | 0.68 | 0.65 | 252 |
micro avg | 0.85 | 0.87 | 0.86 | 2691 |
macro avg | 0.83 | 0.86 | 0.85 | 2691 |
weighted avg | 0.85 | 0.87 | 0.86 | 2691 |
How to use 使い方
fugashiとtransformers,unidic_liteをインストールして (pip install fugashi, pip install unidic_lite, pip install transformers) 以下のコードを実行することで、NERタスクを解かせることができます。 please execute this code.
from transformers import AutoTokenizer,pipeline, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained('Mizuiro-sakura/bert-large-japanese-v2-finetuned-ner')
model=AutoModelForTokenClassification.from_pretrained('Mizuiro-sakura/bert-large-japanese-v2-finetuned-ner') # 学習済みモデルの読み込み
text=('昨日は東京で買い物をした')
ner=pipeline('ner', model=model, tokenizer=tokenizer)
result=ner(text)
print(result)
- Downloads last month
- 107
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.