|
<div align="center"> |
|
<img src="figures/MiniMaxLogo.png" width="60%" alt="MiniMax-Text-01" /> |
|
</div> |
|
<hr> |
|
|
|
<div align="center" style="line-height: 1;"> |
|
<a href="https://www.minimaxi.com/en" target="_blank" style="margin: 2px;"> |
|
<img alt="Homepage" src="https://img.shields.io/badge/_Homepage-MiniMax-FF4040?style=flat-square&labelColor=2C3E50&logo=&logoWidth=20" style="display: inline-block; vertical-align: middle;"/> |
|
</a> |
|
<a href="https://huggingface.co./MiniMaxAI" target="_blank" style="margin: 2px;"> |
|
<img alt="Hugging Face" src="https://img.shields.io/badge/🤗_Hugging_Face-MinMax-FF4040?style=flat-square&labelColor=2C3E50" style="display: inline-block; vertical-align: middle;"/> |
|
</a> |
|
</div> |
|
<div align="center" style="line-height: 1;"> |
|
<a href="https://www.hailuo.ai/" target="_blank" style="margin: 2px;"> |
|
<img alt="Chat" src="https://img.shields.io/badge/Chat-_Hailuo AI-FF4040?style=flat-square&labelColor=2C3E50&logo=&logoWidth=16" style="display: inline-block; vertical-align: middle;"/> |
|
</a> |
|
<a href="https://intl.minimaxi.com" style="margin: 2px;"> |
|
<img alt="API" src="https://img.shields.io/badge/⚡_API-Platform-FF4040?style=flat-square&labelColor=2C3E50" style="display: inline-block; vertical-align: middle;"/> |
|
</a> |
|
</div> |
|
<div align="center" style="line-height: 1;"> |
|
<a href="https://github.com/MiniMax-AI/MiniMax-01/blob/main/LICENSE" style="margin: 2px;"> |
|
<img alt="License" src="https://img.shields.io/badge/📜_License-Model_Agreement-FF4040?style=flat-square&labelColor=2C3E50" style="display: inline-block; vertical-align: middle;"/> |
|
</a> |
|
</div> |
|
|
|
# MiniMax-VL-01 |
|
|
|
## 1. Introduction |
|
We are delighted to introduce our **MiniMax-VL-01** model. It adopts the “ViT-MLP-LLM” framework, which is a commonly used technique in the field of multimodal large language models. The model is initialized and trained with three key parts: a 303-million-parameter Vision Transformer (ViT) for visual encoding, a randomly initialized two-layer MLP projector for image adaptation, and the MiniMax-Text-01 as the base LLM. |
|
MiniMax-VL-01 has a notable dynamic resolution feature. Input images are resized per a pre-set grid, with resolutions from 336×336 to 2016×2016, keeping a 336×336 thumbnail. The resized images are split into non-overlapping patches of the same size. These patches and the thumbnail are encoded separately and then combined for a full image representation. |
|
The training data for MiniMax-VL-01 consists of caption, description, and instruction data. The Vision Transformer (ViT) is trained on 694 million image-caption pairs from scratch. Across four distinct stages of the training pipeline, a total of 512 billion tokens are processed, leveraging this vast amount of data to endow the model with strong capabilities. |
|
Finally, MiniMax-VL-01 has reached top-level performance on multimodal leaderboards, demonstrating its edge and dependability in complex multimodal tasks. |
|
|
|
|
|
<p align="center"> |
|
<img width="100%" src="figures/VisionBench.png"> |
|
</p> |
|
|
|
|
|
## 2. Evaluation |
|
|
|
| Tasks | GPT-4o<br>(11-20) | Claude-3.5-Sonnet (10-22) | Gemini-1.5-Pro (002) | Gemini-2.0-Flash (exp) | Qwen2-VL-72B-Inst. | InternVL2.5-78B | LLama-3.2-90B | MiniMax-VL-01 | |
|
| ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | |
|
| **Knowledge** | | | | | | | | | |
|
| MMMU<sup>*</sup> | 63.5 | **72.0** | 68.4 | 70.6 | 64.5 | 66.5 | 62.1 | 68.5 | |
|
| MMMU-Pro<sup>*</sup> | 54.5 | 54.7 | 50.9 | **57.0** | 43.2 | 47.3 | 36.0 | 52.7 | |
|
| **Visual Q&A** | | | | | | | | | |
|
| ChartQA<sup>*</sup><sub>relaxed</sub> | 88.1 | 90.8 | 88.7 | 88.3 | 91.2 | 91.5 | 85.5 | **91.7** | |
|
| DocVQA<sup>*</sup> | 91.1 | 94.2 | 91.5 | 92.9 | **97.1** | 96.1 | 90.1 | 96.4 | |
|
| OCRBench | 806 | 790 | 800 | 846 | 856 | 847 | 805 | **865** | |
|
| **Mathematics & Sciences** || | | | | | | | |
|
| AI2D<sup>*</sup> | 83.1 | 82.0 | 80.9 | 85.1 | 84.4 | **86.8** | 78.9 | 83.3 | |
|
| MathVista<sup>*</sup> | 62.1 | 65.4 | 70.6 | **73.1** | 69.6 | 68.4 | 57.3 | 68.6 | |
|
| OlympiadBench<sub>full</sub> | 25.2 | 28.4 | 32.1 | **46.1** | 21.9 | 25.1 | 19.3 | 24.2 | |
|
|**Long Context**||||| |
|
|M-LongDoc<sub>acc</sub>| **41.4** | 31.4 | 26.2 | 31.4 | 11.6 | 19.7 | 13.9 | 32.5 | |
|
|**Comprehensive**||||| |
|
|MEGA-Bench<sub>macro</sub> | 49.4 | 51.4 | 45.9 | **53.9** | 46.8 | 45.3 | 19.9 | 47.4 | |
|
|**User Experience**||||| |
|
|In-house Benchmark | 62.3 | 47.0 | 49.2 | **72.1** | 40.6 | 34.8 | 13.6 | 56.6 | |
|
|
|
<sup>*</sup> Evaluated following a _0-shot CoT_ setting. |
|
|
|
|
|
## 3. Quickstart |
|
Here we provide a simple example of loading the tokenizer and model to generate content. |
|
```python |
|
from transformers import AutoModelForCausalLM, AutoProcessor, AutoConfig, QuantoConfig, GenerationConfig |
|
import torch |
|
import json |
|
import os |
|
from PIL import Image |
|
|
|
# load hf config |
|
hf_config = AutoConfig.from_pretrained("MiniMax-VL-01", trust_remote_code=True) |
|
|
|
# quantization config, int8 is recommended |
|
quantization_config = QuantoConfig( |
|
weights="int8", |
|
modules_to_not_convert=[ |
|
"vision_tower", |
|
"image_newline", |
|
"multi_modal_projector", |
|
"lm_head", |
|
"embed_tokens", |
|
] + [f"model.layers.{i}.coefficient" for i in range(hf_config.text_config.num_hidden_layers)] |
|
+ [f"model.layers.{i}.block_sparse_moe.gate" for i in range(hf_config.text_config.num_hidden_layers)] |
|
) |
|
|
|
# set device map |
|
model_safetensors_index_path = os.path.join("MiniMax-VL-01", "model.safetensors.index.json") |
|
with open(model_safetensors_index_path, "r") as f: |
|
model_safetensors_index = json.load(f) |
|
weight_map = model_safetensors_index['weight_map'] |
|
vision_map = {} |
|
for key, value in weight_map.items(): |
|
if 'vision_tower' in key or 'image_newline' in key or 'multi_modal_projector' in key: |
|
new_key = key.replace('.weight','').replace('.bias','') |
|
if new_key not in vision_map: |
|
vision_map[new_key] = value |
|
# assume 8 GPUs |
|
world_size = 8 |
|
device_map = { |
|
'language_model.model.embed_tokens': 'cuda:0', |
|
'language_model.model.norm': f'cuda:{world_size - 1}', |
|
'language_model.lm_head': f'cuda:{world_size - 1}' |
|
} |
|
for key, value in vision_map.items(): |
|
device_map[key] = f'cuda:0' |
|
device_map['vision_tower.vision_model.post_layernorm'] = f'cuda:0' |
|
layers_per_device = hf_config.text_config.num_hidden_layers // world_size |
|
for i in range(world_size): |
|
for j in range(layers_per_device): |
|
device_map[f'language_model.model.layers.{i * layers_per_device + j}'] = f'cuda:{i}' |
|
|
|
# load processor |
|
processor = AutoProcessor.from_pretrained("MiniMax-VL-01", trust_remote_code=True) |
|
messages = [ |
|
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant created by MiniMax based on MiniMax-VL-01 model."}]}, |
|
{"role": "user", "content": [{"type": "image", "image": "placeholder"},{"type": "text", "text": "Describe this image."}]}, |
|
] |
|
prompt = processor.tokenizer.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
raw_image = Image.open("figures/image.jpg") |
|
# tokenize and move to device |
|
model_inputs = processor(images=[raw_image], text=prompt, return_tensors='pt').to('cuda').to(torch.bfloat16) |
|
|
|
# load bfloat16 model, move to device, and apply quantization |
|
quantized_model = AutoModelForCausalLM.from_pretrained( |
|
"MiniMax-VL-01", |
|
torch_dtype="bfloat16", |
|
device_map=device_map, |
|
quantization_config=quantization_config, |
|
trust_remote_code=True, |
|
offload_buffers=True, |
|
) |
|
generation_config = GenerationConfig( |
|
max_new_tokens=100, |
|
eos_token_id=200020, |
|
use_cache=True, |
|
) |
|
|
|
# generate response |
|
generated_ids = quantized_model.generate(**model_inputs, generation_config=generation_config) |
|
print(f"generated_ids: {generated_ids}") |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
response = processor.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
``` |
|
|
|
## 4. Chatbot & API |
|
For general use and evaluation, we provide a [Chatbot](https://www.hailuo.ai/) with online search capabilities and the [online API](https://intl.minimaxi.com) for developers. |
|
|
|
Contact us at [[email protected]](mailto:[email protected]). |
|
|