mistral-sft-7b-dpo-qlora

This model is a fine-tuned version of HuggingFaceH4/mistral-7b-sft-beta on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6936
  • Rewards/chosen: 0.0005
  • Rewards/rejected: 0.0001
  • Rewards/accuracies: 0.6875
  • Rewards/margins: 0.0003
  • Logps/rejected: -122.9776
  • Logps/chosen: -86.4464
  • Logits/rejected: -3.0453
  • Logits/chosen: -2.9824

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 221
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Framework versions

  • PEFT 0.7.1
  • Transformers 4.38.2
  • Pytorch 2.2.1
  • Datasets 2.14.6
  • Tokenizers 0.15.2
Downloads last month
5
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for MichaelR207/mistral-sft-7b-dpo-qlora

Adapter
(15)
this model

Dataset used to train MichaelR207/mistral-sft-7b-dpo-qlora