|
<p><strong><font size="5">Information</font></strong></p> |
|
GPT4-X-Alpaca 30B 4-bit working with GPTQ versions used in Oobabooga's Text Generation Webui and KoboldAI. |
|
<p>There are 2 quantized versions, one is using <i>--true-sequential</i> and <i>--act-order</i> optimizations, and the other is using <i>--true-sequential</i> and <i>--groupsize 128</i> optimizations.</p> |
|
This was made using Chansung's GPT4-Alpaca Lora: https://huggingface.co./chansung/gpt4-alpaca-lora-30b |
|
|
|
<p><strong>Training Parameters</strong></p> |
|
<ul><li>num_epochs=10</li><li>cutoff_len=512</li><li>group_by_length</li><li>lora_target_modules='[q_proj,k_proj,v_proj,o_proj]'</li><li>lora_r=16</li><li>micro_batch_size=8</li></ul> |
|
|
|
<p><strong><font size="5">Benchmarks</font></strong></p> |
|
|
|
<p><strong><font size="4">--true-sequential --act-order</font></strong></p> |
|
|
|
<strong>Wikitext2</strong>: 4.481280326843262 |
|
|
|
<strong>Ptb-New</strong>: 8.539161682128906 |
|
|
|
<strong>C4-New</strong>: 6.451964855194092 |
|
|
|
<strong>Note</strong>: This version does not use <i>--groupsize 128</i>, therefore evaluations are minimally higher. However, this version allows fitting the whole model at full context using only 24GB VRAM. |
|
|
|
<p><strong><font size="4">--true-sequential --groupsize 128</font></strong></p> |
|
|
|
<strong>Wikitext2</strong>: 4.285132884979248 |
|
|
|
<strong>Ptb-New</strong>: 8.34856128692627 |
|
|
|
<strong>C4-New</strong>: 6.292652130126953 |
|
|
|
<strong>Note</strong>: This version uses <i>--groupsize 128</i>, resulting in better evaluations. However, it consumes more VRAM. |