vit-msn-small-beta-fia-manually-enhanced-HSV_test_4
This model is a fine-tuned version of Melo1512/vit-msn-small-beta-fia-manually-enhanced-HSV_test_3 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.3252
- Accuracy: 0.8662
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.5714 | 1 | 0.3425 | 0.8803 |
No log | 1.7143 | 3 | 0.3532 | 0.8803 |
No log | 2.8571 | 5 | 0.3731 | 0.8732 |
No log | 4.0 | 7 | 0.3582 | 0.8662 |
No log | 4.5714 | 8 | 0.3560 | 0.8732 |
0.2214 | 5.7143 | 10 | 0.4090 | 0.8451 |
0.2214 | 6.8571 | 12 | 0.4253 | 0.8239 |
0.2214 | 8.0 | 14 | 0.3826 | 0.8592 |
0.2214 | 8.5714 | 15 | 0.3748 | 0.8592 |
0.2214 | 9.7143 | 17 | 0.3411 | 0.8592 |
0.2214 | 10.8571 | 19 | 0.3402 | 0.8521 |
0.1927 | 12.0 | 21 | 0.3833 | 0.8592 |
0.1927 | 12.5714 | 22 | 0.3901 | 0.8592 |
0.1927 | 13.7143 | 24 | 0.3608 | 0.8451 |
0.1927 | 14.8571 | 26 | 0.3565 | 0.8662 |
0.1927 | 16.0 | 28 | 0.3677 | 0.8803 |
0.1927 | 16.5714 | 29 | 0.3672 | 0.8732 |
0.213 | 17.7143 | 31 | 0.3429 | 0.8592 |
0.213 | 18.8571 | 33 | 0.3402 | 0.8803 |
0.213 | 20.0 | 35 | 0.3508 | 0.8662 |
0.213 | 20.5714 | 36 | 0.3578 | 0.8662 |
0.213 | 21.7143 | 38 | 0.3310 | 0.8662 |
0.1927 | 22.8571 | 40 | 0.3252 | 0.8662 |
0.1927 | 24.0 | 42 | 0.3473 | 0.8592 |
0.1927 | 24.5714 | 43 | 0.3671 | 0.8592 |
0.1927 | 25.7143 | 45 | 0.3863 | 0.8592 |
0.1927 | 26.8571 | 47 | 0.3622 | 0.8592 |
0.1927 | 28.0 | 49 | 0.3521 | 0.8592 |
0.1856 | 28.5714 | 50 | 0.3529 | 0.8592 |
0.1856 | 29.7143 | 52 | 0.3596 | 0.8592 |
0.1856 | 30.8571 | 54 | 0.3648 | 0.8592 |
0.1856 | 32.0 | 56 | 0.3637 | 0.8662 |
0.1856 | 32.5714 | 57 | 0.3686 | 0.8592 |
0.1856 | 33.7143 | 59 | 0.3602 | 0.8521 |
0.18 | 34.8571 | 61 | 0.3648 | 0.8662 |
0.18 | 36.0 | 63 | 0.3529 | 0.8521 |
0.18 | 36.5714 | 64 | 0.3595 | 0.8662 |
0.18 | 37.7143 | 66 | 0.3939 | 0.8521 |
0.18 | 38.8571 | 68 | 0.4526 | 0.8239 |
0.2048 | 40.0 | 70 | 0.4505 | 0.8239 |
0.2048 | 40.5714 | 71 | 0.4319 | 0.8451 |
0.2048 | 41.7143 | 73 | 0.3779 | 0.8521 |
0.2048 | 42.8571 | 75 | 0.3352 | 0.8592 |
0.2048 | 44.0 | 77 | 0.3353 | 0.8662 |
0.2048 | 44.5714 | 78 | 0.3450 | 0.8521 |
0.1977 | 45.7143 | 80 | 0.3557 | 0.8521 |
0.1977 | 46.8571 | 82 | 0.3715 | 0.8521 |
0.1977 | 48.0 | 84 | 0.3852 | 0.8521 |
0.1977 | 48.5714 | 85 | 0.3962 | 0.8521 |
0.1977 | 49.7143 | 87 | 0.4063 | 0.8521 |
0.1977 | 50.8571 | 89 | 0.4012 | 0.8521 |
0.1952 | 52.0 | 91 | 0.3912 | 0.8521 |
0.1952 | 52.5714 | 92 | 0.3874 | 0.8521 |
0.1952 | 53.7143 | 94 | 0.3822 | 0.8521 |
0.1952 | 54.8571 | 96 | 0.3758 | 0.8592 |
0.1952 | 56.0 | 98 | 0.3722 | 0.8592 |
0.1952 | 56.5714 | 99 | 0.3720 | 0.8592 |
0.1714 | 57.1429 | 100 | 0.3717 | 0.8592 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.19.1
- Downloads last month
- 26
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.