Original result

IoU metric: bbox
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.005
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.005
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.005
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.203
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.068
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.005
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.029
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.029
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.029
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.200
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.067
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.029

After training result

IoU metric: bbox
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.009
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.020
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.008
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.009
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.043
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.076
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.087
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.089

Config

  • dataset: VinXray
  • original model: hustvl/yolos-tiny
  • lr: 0.0001
  • dropout_rate: 0.1
  • weight_decay: 0.0001
  • max_epochs: 1
  • train samples: 67234

Logging

Training process

{'validation_loss': tensor(8.5927, device='cuda:0'), 'validation_loss_ce': tensor(3.4775, device='cuda:0'), 'validation_loss_bbox': tensor(0.5756, device='cuda:0'), 'validation_loss_giou': tensor(1.1184, device='cuda:0'), 'validation_cardinality_error': tensor(99.5938, device='cuda:0')}
{'training_loss': tensor(1.3630, device='cuda:0'), 'train_loss_ce': tensor(0.2593, device='cuda:0'), 'train_loss_bbox': tensor(0.0803, device='cuda:0'), 'train_loss_giou': tensor(0.3511, device='cuda:0'), 'train_cardinality_error': tensor(0.5294, device='cuda:0'), 'validation_loss': tensor(1.5262, device='cuda:0'), 'validation_loss_ce': tensor(0.2351, device='cuda:0'), 'validation_loss_bbox': tensor(0.0827, device='cuda:0'), 'validation_loss_giou': tensor(0.4389, device='cuda:0'), 'validation_cardinality_error': tensor(0.4794, device='cuda:0')}

Examples

{'size': tensor([560, 512]), 'image_id': tensor([1]), 'class_labels': tensor([], dtype=torch.int64), 'boxes': tensor([], size=(0, 4)), 'area': tensor([]), 'iscrowd': tensor([], dtype=torch.int64), 'orig_size': tensor([2580, 2332])}

Example

Downloads last month
3
Safetensors
Model size
6.47M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.