metadata
license: apache-2.0
tags:
- finetuned
- quantized
- 4-bit
- gptq
- transformers
- safetensors
- mixtral
- text-generation
- Mixtral
- instruct
- finetune
- chatml
- DPO
- RLHF
- gpt4
- synthetic data
- distillation
- en
- base_model:mistralai/Mixtral-8x7B-v0.1
- license:apache-2.0
- autotrain_compatible
- endpoints_compatible
- has_space
- text-generation-inference
- region:us
model_name: Nous-Hermes-2-Mixtral-8x7B-DPO-GPTQ
base_model: NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO
inference: false
model_creator: NousResearch
pipeline_tag: text-generation
quantized_by: MaziyarPanahi
Description
MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-DPO-GPTQ is a quantized (GPTQ) version of NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO
How to use
Install the necessary packages
pip install --upgrade accelerate auto-gptq transformers
Example Python code
from transformers import AutoTokenizer, pipeline
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
import torch
model_id = "MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-DPO-GPTQ"
quantize_config = BaseQuantizeConfig(
bits=4,
group_size=128,
desc_act=False
)
model = AutoGPTQForCausalLM.from_quantized(
model_id,
use_safetensors=True,
device="cuda:0",
quantize_config=quantize_config)
tokenizer = AutoTokenizer.from_pretrained(model_id)
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
temperature=0.7,
top_p=0.95,
repetition_penalty=1.1
)
outputs = pipe("What is a large language model?")
print(outputs[0]["generated_text"])