Edit model card

Description

mistralai/Mistral-7B-v0.1 model fine-tuned over 52k alpaca dataset

How to use it

# pip install transformers==4.35.2
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
from transformers import pipeline

model_id="MaziyarPanahi/Mistral-7B-Alpaca-52k-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id)

streamer = TextStreamer(tokenizer)

model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.float16,
    device_map="auto",
)

pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=1024,
    temperature=0.1,
    do_sample=True,
    top_p=0.95,
    repetition_penalty=1.15,
    return_full_text=False,
    streamer=streamer
)

prompt = """Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
describe about pros and cons of docker system. Answer in bullet point

### Response:
"""

res = pipe(prompt)[0]['generated_text']

Results:

Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
describe about pros and cons of docker system. Answer in bullet point

### Response:
Pros of Docker System: 
- Improved portability - Docker containers can be easily moved between different environments, making it easier to deploy applications across multiple platforms.
- Increased security - Containers are isolated from each other, which helps prevent malicious code from spreading throughout the system.
- Better resource utilization - Containers allow for better resource management by allowing users to run multiple applications on a single host without having to worry about conflicts or performance issues.

Cons of Docker System: 
- Learning curve - It takes time to learn how to use Docker effectively, as there are many commands and concepts involved.
- Limited customization options - While Docker provides some basic configuration options, more advanced features such as network routing require additional tools.
- Performance overhead - Running multiple containers on a single host may result in slower performance due to increased memory usage.</s>

Eval

{
    "all": {
        "acc": 0.6309850839451187,
        "acc_stderr": 0.032333688535613636,
        "acc_norm": 0.6368691004374645,
        "acc_norm_stderr": 0.03298401757997533,
        "mc1": 0.29008567931456547,
        "mc1_stderr": 0.01588623687420952,
        "mc2": 0.41501661742948026,
        "mc2_stderr": 0.014285902986671931
    },
    "harness|arc:challenge|25": {
        "acc": 0.5750853242320819,
        "acc_stderr": 0.014445698968520767,
        "acc_norm": 0.6092150170648464,
        "acc_norm_stderr": 0.01425856388051378
    },
    "harness|hellaswag|10": {
        "acc": 0.6221868153754232,
        "acc_stderr": 0.0048384969668239025,
        "acc_norm": 0.8212507468631747,
        "acc_norm_stderr": 0.0038235918141330347
    },
    "harness|hendrycksTest-abstract_algebra|5": {
        "acc": 0.32,
        "acc_stderr": 0.046882617226215034,
        "acc_norm": 0.32,
        "acc_norm_stderr": 0.046882617226215034
    },
    "harness|hendrycksTest-anatomy|5": {
        "acc": 0.6,
        "acc_stderr": 0.04232073695151589,
        "acc_norm": 0.6,
        "acc_norm_stderr": 0.04232073695151589
    },
    "harness|hendrycksTest-astronomy|5": {
        "acc": 0.6447368421052632,
        "acc_stderr": 0.038947344870133176,
        "acc_norm": 0.6447368421052632,
        "acc_norm_stderr": 0.038947344870133176
    },
    "harness|hendrycksTest-business_ethics|5": {
        "acc": 0.57,
        "acc_stderr": 0.04975698519562428,
        "acc_norm": 0.57,
        "acc_norm_stderr": 0.04975698519562428
    },
    "harness|hendrycksTest-clinical_knowledge|5": {
        "acc": 0.6792452830188679,
        "acc_stderr": 0.02872750295788027,
        "acc_norm": 0.6792452830188679,
        "acc_norm_stderr": 0.02872750295788027
    },
    "harness|hendrycksTest-college_biology|5": {
        "acc": 0.7430555555555556,
        "acc_stderr": 0.03653946969442099,
        "acc_norm": 0.7430555555555556,
        "acc_norm_stderr": 0.03653946969442099
    },
    "harness|hendrycksTest-college_chemistry|5": {
        "acc": 0.49,
        "acc_stderr": 0.05024183937956912,
        "acc_norm": 0.49,
        "acc_norm_stderr": 0.05024183937956912
    },
    "harness|hendrycksTest-college_computer_science|5": {
        "acc": 0.56,
        "acc_stderr": 0.04988876515698589,
        "acc_norm": 0.56,
        "acc_norm_stderr": 0.04988876515698589
    },
    "harness|hendrycksTest-college_mathematics|5": {
        "acc": 0.36,
        "acc_stderr": 0.048241815132442176,
        "acc_norm": 0.36,
        "acc_norm_stderr": 0.048241815132442176
    },
    "harness|hendrycksTest-college_medicine|5": {
        "acc": 0.653179190751445,
        "acc_stderr": 0.036291466701596636,
        "acc_norm": 0.653179190751445,
        "acc_norm_stderr": 0.036291466701596636
    },
    "harness|hendrycksTest-college_physics|5": {
        "acc": 0.4019607843137255,
        "acc_stderr": 0.048786087144669955,
        "acc_norm": 0.4019607843137255,
        "acc_norm_stderr": 0.048786087144669955
    },
    "harness|hendrycksTest-computer_security|5": {
        "acc": 0.79,
        "acc_stderr": 0.04093601807403326,
        "acc_norm": 0.79,
        "acc_norm_stderr": 0.04093601807403326
    },
    "harness|hendrycksTest-conceptual_physics|5": {
        "acc": 0.5702127659574469,
        "acc_stderr": 0.03236214467715564,
        "acc_norm": 0.5702127659574469,
        "acc_norm_stderr": 0.03236214467715564
    },
    "harness|hendrycksTest-econometrics|5": {
        "acc": 0.49122807017543857,
        "acc_stderr": 0.047028804320496165,
        "acc_norm": 0.49122807017543857,
        "acc_norm_stderr": 0.047028804320496165
    },
    "harness|hendrycksTest-electrical_engineering|5": {
        "acc": 0.5862068965517241,
        "acc_stderr": 0.04104269211806232,
        "acc_norm": 0.5862068965517241,
        "acc_norm_stderr": 0.04104269211806232
    },
    "harness|hendrycksTest-elementary_mathematics|5": {
        "acc": 0.3915343915343915,
        "acc_stderr": 0.025138091388851116,
        "acc_norm": 0.3915343915343915,
        "acc_norm_stderr": 0.025138091388851116
    },
    "harness|hendrycksTest-formal_logic|5": {
        "acc": 0.4444444444444444,
        "acc_stderr": 0.04444444444444449,
        "acc_norm": 0.4444444444444444,
        "acc_norm_stderr": 0.04444444444444449
    },
    "harness|hendrycksTest-global_facts|5": {
        "acc": 0.32,
        "acc_stderr": 0.04688261722621504,
        "acc_norm": 0.32,
        "acc_norm_stderr": 0.04688261722621504
    },
    "harness|hendrycksTest-high_school_biology|5": {
        "acc": 0.7419354838709677,
        "acc_stderr": 0.02489246917246283,
        "acc_norm": 0.7419354838709677,
        "acc_norm_stderr": 0.02489246917246283
    },
    "harness|hendrycksTest-high_school_chemistry|5": {
        "acc": 0.5024630541871922,
        "acc_stderr": 0.035179450386910616,
        "acc_norm": 0.5024630541871922,
        "acc_norm_stderr": 0.035179450386910616
    },
    "harness|hendrycksTest-high_school_computer_science|5": {
        "acc": 0.67,
        "acc_stderr": 0.047258156262526066,
        "acc_norm": 0.67,
        "acc_norm_stderr": 0.047258156262526066
    },
    "harness|hendrycksTest-high_school_european_history|5": {
        "acc": 0.7575757575757576,
        "acc_stderr": 0.03346409881055953,
        "acc_norm": 0.7575757575757576,
        "acc_norm_stderr": 0.03346409881055953
    },
    "harness|hendrycksTest-high_school_geography|5": {
        "acc": 0.7929292929292929,
        "acc_stderr": 0.028869778460267042,
        "acc_norm": 0.7929292929292929,
        "acc_norm_stderr": 0.028869778460267042
    },
    "harness|hendrycksTest-high_school_government_and_politics|5": {
        "acc": 0.8601036269430051,
        "acc_stderr": 0.025033870583015184,
        "acc_norm": 0.8601036269430051,
        "acc_norm_stderr": 0.025033870583015184
    },
    "harness|hendrycksTest-high_school_macroeconomics|5": {
        "acc": 0.6358974358974359,
        "acc_stderr": 0.024396672985094764,
        "acc_norm": 0.6358974358974359,
        "acc_norm_stderr": 0.024396672985094764
    },
    "harness|hendrycksTest-high_school_mathematics|5": {
        "acc": 0.362962962962963,
        "acc_stderr": 0.029318203645206865,
        "acc_norm": 0.362962962962963,
        "acc_norm_stderr": 0.029318203645206865
    },
    "harness|hendrycksTest-high_school_microeconomics|5": {
        "acc": 0.6218487394957983,
        "acc_stderr": 0.03149930577784906,
        "acc_norm": 0.6218487394957983,
        "acc_norm_stderr": 0.03149930577784906
    },
    "harness|hendrycksTest-high_school_physics|5": {
        "acc": 0.32450331125827814,
        "acc_stderr": 0.038227469376587525,
        "acc_norm": 0.32450331125827814,
        "acc_norm_stderr": 0.038227469376587525
    },
    "harness|hendrycksTest-high_school_psychology|5": {
        "acc": 0.8146788990825689,
        "acc_stderr": 0.016659279700295838,
        "acc_norm": 0.8146788990825689,
        "acc_norm_stderr": 0.016659279700295838
    },
    "harness|hendrycksTest-high_school_statistics|5": {
        "acc": 0.49537037037037035,
        "acc_stderr": 0.03409825519163572,
        "acc_norm": 0.49537037037037035,
        "acc_norm_stderr": 0.03409825519163572
    },
    "harness|hendrycksTest-high_school_us_history|5": {
        "acc": 0.7892156862745098,
        "acc_stderr": 0.028626547912437406,
        "acc_norm": 0.7892156862745098,
        "acc_norm_stderr": 0.028626547912437406
    },
    "harness|hendrycksTest-high_school_world_history|5": {
        "acc": 0.7552742616033755,
        "acc_stderr": 0.027985699387036423,
        "acc_norm": 0.7552742616033755,
        "acc_norm_stderr": 0.027985699387036423
    },
    "harness|hendrycksTest-human_aging|5": {
        "acc": 0.6636771300448431,
        "acc_stderr": 0.031708824268455,
        "acc_norm": 0.6636771300448431,
        "acc_norm_stderr": 0.031708824268455
    },
    "harness|hendrycksTest-human_sexuality|5": {
        "acc": 0.7862595419847328,
        "acc_stderr": 0.0359546161177469,
        "acc_norm": 0.7862595419847328,
        "acc_norm_stderr": 0.0359546161177469
    },
    "harness|hendrycksTest-international_law|5": {
        "acc": 0.7933884297520661,
        "acc_stderr": 0.03695980128098824,
        "acc_norm": 0.7933884297520661,
        "acc_norm_stderr": 0.03695980128098824
    },
    "harness|hendrycksTest-jurisprudence|5": {
        "acc": 0.7592592592592593,
        "acc_stderr": 0.04133119440243838,
        "acc_norm": 0.7592592592592593,
        "acc_norm_stderr": 0.04133119440243838
    },
    "harness|hendrycksTest-logical_fallacies|5": {
        "acc": 0.803680981595092,
        "acc_stderr": 0.031207970394709218,
        "acc_norm": 0.803680981595092,
        "acc_norm_stderr": 0.031207970394709218
    },
    "harness|hendrycksTest-machine_learning|5": {
        "acc": 0.5178571428571429,
        "acc_stderr": 0.047427623612430116,
        "acc_norm": 0.5178571428571429,
        "acc_norm_stderr": 0.047427623612430116
    },
    "harness|hendrycksTest-management|5": {
        "acc": 0.8252427184466019,
        "acc_stderr": 0.03760178006026621,
        "acc_norm": 0.8252427184466019,
        "acc_norm_stderr": 0.03760178006026621
    },
    "harness|hendrycksTest-marketing|5": {
        "acc": 0.8632478632478633,
        "acc_stderr": 0.022509033937077816,
        "acc_norm": 0.8632478632478633,
        "acc_norm_stderr": 0.022509033937077816
    },
    "harness|hendrycksTest-medical_genetics|5": {
        "acc": 0.74,
        "acc_stderr": 0.04408440022768078,
        "acc_norm": 0.74,
        "acc_norm_stderr": 0.04408440022768078
    },
    "harness|hendrycksTest-miscellaneous|5": {
        "acc": 0.8173690932311622,
        "acc_stderr": 0.013816335389973136,
        "acc_norm": 0.8173690932311622,
        "acc_norm_stderr": 0.013816335389973136
    },
    "harness|hendrycksTest-moral_disputes|5": {
        "acc": 0.7023121387283237,
        "acc_stderr": 0.024617055388677,
        "acc_norm": 0.7023121387283237,
        "acc_norm_stderr": 0.024617055388677
    },
    "harness|hendrycksTest-moral_scenarios|5": {
        "acc": 0.2335195530726257,
        "acc_stderr": 0.014149575348976269,
        "acc_norm": 0.2335195530726257,
        "acc_norm_stderr": 0.014149575348976269
    },
    "harness|hendrycksTest-nutrition|5": {
        "acc": 0.7450980392156863,
        "acc_stderr": 0.024954184324879905,
        "acc_norm": 0.7450980392156863,
        "acc_norm_stderr": 0.024954184324879905
    },
    "harness|hendrycksTest-philosophy|5": {
        "acc": 0.7106109324758842,
        "acc_stderr": 0.025755865922632945,
        "acc_norm": 0.7106109324758842,
        "acc_norm_stderr": 0.025755865922632945
    },
    "harness|hendrycksTest-prehistory|5": {
        "acc": 0.7191358024691358,
        "acc_stderr": 0.025006469755799215,
        "acc_norm": 0.7191358024691358,
        "acc_norm_stderr": 0.025006469755799215
    },
    "harness|hendrycksTest-professional_accounting|5": {
        "acc": 0.4716312056737589,
        "acc_stderr": 0.029779450957303062,
        "acc_norm": 0.4716312056737589,
        "acc_norm_stderr": 0.029779450957303062
    },
    "harness|hendrycksTest-professional_law|5": {
        "acc": 0.4498044328552803,
        "acc_stderr": 0.012705721498565107,
        "acc_norm": 0.4498044328552803,
        "acc_norm_stderr": 0.012705721498565107
    },
    "harness|hendrycksTest-professional_medicine|5": {
        "acc": 0.6580882352941176,
        "acc_stderr": 0.02881472242225418,
        "acc_norm": 0.6580882352941176,
        "acc_norm_stderr": 0.02881472242225418
    },
    "harness|hendrycksTest-professional_psychology|5": {
        "acc": 0.6519607843137255,
        "acc_stderr": 0.019270998708223974,
        "acc_norm": 0.6519607843137255,
        "acc_norm_stderr": 0.019270998708223974
    },
    "harness|hendrycksTest-public_relations|5": {
        "acc": 0.6636363636363637,
        "acc_stderr": 0.04525393596302506,
        "acc_norm": 0.6636363636363637,
        "acc_norm_stderr": 0.04525393596302506
    },
    "harness|hendrycksTest-security_studies|5": {
        "acc": 0.7224489795918367,
        "acc_stderr": 0.028666857790274645,
        "acc_norm": 0.7224489795918367,
        "acc_norm_stderr": 0.028666857790274645
    },
    "harness|hendrycksTest-sociology|5": {
        "acc": 0.8557213930348259,
        "acc_stderr": 0.02484575321230604,
        "acc_norm": 0.8557213930348259,
        "acc_norm_stderr": 0.02484575321230604
    },
    "harness|hendrycksTest-us_foreign_policy|5": {
        "acc": 0.86,
        "acc_stderr": 0.03487350880197771,
        "acc_norm": 0.86,
        "acc_norm_stderr": 0.03487350880197771
    },
    "harness|hendrycksTest-virology|5": {
        "acc": 0.5481927710843374,
        "acc_stderr": 0.03874371556587953,
        "acc_norm": 0.5481927710843374,
        "acc_norm_stderr": 0.03874371556587953
    },
    "harness|hendrycksTest-world_religions|5": {
        "acc": 0.8421052631578947,
        "acc_stderr": 0.027966785859160896,
        "acc_norm": 0.8421052631578947,
        "acc_norm_stderr": 0.027966785859160896
    },
    "harness|truthfulqa:mc|0": {
        "mc1": 0.29008567931456547,
        "mc1_stderr": 0.01588623687420952,
        "mc2": 0.41501661742948026,
        "mc2_stderr": 0.014285902986671931
    },
    "harness|winogrande|5": {
        "acc": 0.7734806629834254,
        "acc_stderr": 0.011764149054698332
    },
    "harness|gsm8k|5": {
        "acc": 0.37452615617892343,
        "acc_stderr": 0.013331774158491393
    }
}

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 60.46
AI2 Reasoning Challenge (25-Shot) 60.92
HellaSwag (10-Shot) 82.13
MMLU (5-Shot) 63.41
TruthfulQA (0-shot) 41.50
Winogrande (5-shot) 77.35
GSM8k (5-shot) 37.45
Downloads last month
16
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for MaziyarPanahi/Mistral-7B-Alpaca-52k-v0.1

Finetuned
(685)
this model
Quantizations
1 model

Dataset used to train MaziyarPanahi/Mistral-7B-Alpaca-52k-v0.1

Evaluation results