arabert_no_augmentation_organization_task1_fold1
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7407
- Qwk: 0.7336
- Mse: 0.7407
- Rmse: 0.8606
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.1818 | 2 | 3.0376 | 0.0094 | 3.0376 | 1.7429 |
No log | 0.3636 | 4 | 1.6849 | -0.0143 | 1.6849 | 1.2980 |
No log | 0.5455 | 6 | 1.2236 | 0.0597 | 1.2236 | 1.1061 |
No log | 0.7273 | 8 | 1.2683 | -0.0302 | 1.2683 | 1.1262 |
No log | 0.9091 | 10 | 1.1217 | -0.0161 | 1.1217 | 1.0591 |
No log | 1.0909 | 12 | 0.9264 | -0.0467 | 0.9264 | 0.9625 |
No log | 1.2727 | 14 | 0.8294 | -0.0284 | 0.8294 | 0.9107 |
No log | 1.4545 | 16 | 0.8008 | 0.0427 | 0.8008 | 0.8949 |
No log | 1.6364 | 18 | 0.7784 | 0.0427 | 0.7784 | 0.8823 |
No log | 1.8182 | 20 | 0.7216 | 0.0 | 0.7216 | 0.8495 |
No log | 2.0 | 22 | 0.7271 | 0.2857 | 0.7271 | 0.8527 |
No log | 2.1818 | 24 | 0.7480 | 0.3090 | 0.7480 | 0.8649 |
No log | 2.3636 | 26 | 0.6967 | 0.3109 | 0.6967 | 0.8347 |
No log | 2.5455 | 28 | 0.6857 | 0.4 | 0.6857 | 0.8281 |
No log | 2.7273 | 30 | 0.6479 | 0.5926 | 0.6479 | 0.8049 |
No log | 2.9091 | 32 | 0.6868 | 0.5926 | 0.6868 | 0.8287 |
No log | 3.0909 | 34 | 0.6055 | 0.6316 | 0.6055 | 0.7781 |
No log | 3.2727 | 36 | 0.5330 | 0.5776 | 0.5330 | 0.7301 |
No log | 3.4545 | 38 | 0.4870 | 0.6345 | 0.4870 | 0.6979 |
No log | 3.6364 | 40 | 0.5030 | 0.6638 | 0.5030 | 0.7093 |
No log | 3.8182 | 42 | 0.4888 | 0.5767 | 0.4888 | 0.6991 |
No log | 4.0 | 44 | 0.4738 | 0.5767 | 0.4738 | 0.6884 |
No log | 4.1818 | 46 | 0.5713 | 0.6410 | 0.5713 | 0.7559 |
No log | 4.3636 | 48 | 0.7034 | 0.7482 | 0.7034 | 0.8387 |
No log | 4.5455 | 50 | 0.7505 | 0.7426 | 0.7505 | 0.8663 |
No log | 4.7273 | 52 | 0.7736 | 0.7426 | 0.7736 | 0.8796 |
No log | 4.9091 | 54 | 0.6137 | 0.7390 | 0.6137 | 0.7834 |
No log | 5.0909 | 56 | 0.6615 | 0.7390 | 0.6615 | 0.8133 |
No log | 5.2727 | 58 | 0.8090 | 0.7138 | 0.8090 | 0.8995 |
No log | 5.4545 | 60 | 0.7775 | 0.7287 | 0.7775 | 0.8818 |
No log | 5.6364 | 62 | 0.6471 | 0.7107 | 0.6471 | 0.8045 |
No log | 5.8182 | 64 | 0.5071 | 0.6547 | 0.5071 | 0.7121 |
No log | 6.0 | 66 | 0.4469 | 0.6500 | 0.4469 | 0.6685 |
No log | 6.1818 | 68 | 0.4640 | 0.6866 | 0.4640 | 0.6812 |
No log | 6.3636 | 70 | 0.6052 | 0.7266 | 0.6052 | 0.7779 |
No log | 6.5455 | 72 | 0.8728 | 0.6873 | 0.8728 | 0.9342 |
No log | 6.7273 | 74 | 0.9762 | 0.7219 | 0.9762 | 0.9880 |
No log | 6.9091 | 76 | 0.8461 | 0.6873 | 0.8461 | 0.9198 |
No log | 7.0909 | 78 | 0.6379 | 0.7181 | 0.6379 | 0.7987 |
No log | 7.2727 | 80 | 0.5480 | 0.6839 | 0.5480 | 0.7403 |
No log | 7.4545 | 82 | 0.5355 | 0.6839 | 0.5355 | 0.7318 |
No log | 7.6364 | 84 | 0.5699 | 0.7162 | 0.5699 | 0.7549 |
No log | 7.8182 | 86 | 0.6654 | 0.6915 | 0.6654 | 0.8157 |
No log | 8.0 | 88 | 0.8127 | 0.7 | 0.8127 | 0.9015 |
No log | 8.1818 | 90 | 0.8907 | 0.7 | 0.8907 | 0.9438 |
No log | 8.3636 | 92 | 0.8716 | 0.7 | 0.8716 | 0.9336 |
No log | 8.5455 | 94 | 0.8174 | 0.72 | 0.8174 | 0.9041 |
No log | 8.7273 | 96 | 0.7611 | 0.7336 | 0.7611 | 0.8724 |
No log | 8.9091 | 98 | 0.7738 | 0.7336 | 0.7738 | 0.8797 |
No log | 9.0909 | 100 | 0.7710 | 0.7336 | 0.7710 | 0.8781 |
No log | 9.2727 | 102 | 0.7508 | 0.7336 | 0.7508 | 0.8665 |
No log | 9.4545 | 104 | 0.7428 | 0.7336 | 0.7428 | 0.8619 |
No log | 9.6364 | 106 | 0.7452 | 0.7336 | 0.7452 | 0.8633 |
No log | 9.8182 | 108 | 0.7414 | 0.7336 | 0.7414 | 0.8611 |
No log | 10.0 | 110 | 0.7407 | 0.7336 | 0.7407 | 0.8606 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 160
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for MayBashendy/arabert_no_augmentation_organization_task1_fold1
Base model
aubmindlab/bert-base-arabertv02