Arabic_FineTuningAraBERT_AugV4-trial2_k1_task1_organization_fold0

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8043
  • Qwk: 0.7268
  • Mse: 0.8043
  • Rmse: 0.8968

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 0.0667 2 5.3857 0.0 5.3857 2.3207
No log 0.1333 4 3.2299 0.0027 3.2299 1.7972
No log 0.2 6 1.7033 0.1778 1.7033 1.3051
No log 0.2667 8 1.2584 0.2159 1.2584 1.1218
No log 0.3333 10 1.2060 0.0742 1.2060 1.0982
No log 0.4 12 1.3288 0.4854 1.3288 1.1528
No log 0.4667 14 1.4327 0.3259 1.4327 1.1970
No log 0.5333 16 1.5300 0.2184 1.5300 1.2369
No log 0.6 18 1.5359 0.2435 1.5359 1.2393
No log 0.6667 20 1.3307 0.3226 1.3307 1.1536
No log 0.7333 22 1.1492 0.4830 1.1492 1.0720
No log 0.8 24 0.8873 0.5106 0.8873 0.9420
No log 0.8667 26 0.9113 0.3364 0.9113 0.9546
No log 0.9333 28 0.8242 0.5323 0.8242 0.9078
No log 1.0 30 1.1596 0.3831 1.1596 1.0768
No log 1.0667 32 1.3726 0.3816 1.3726 1.1716
No log 1.1333 34 1.4508 0.3226 1.4508 1.2045
No log 1.2 36 1.4111 0.3816 1.4111 1.1879
No log 1.2667 38 1.1806 0.3831 1.1806 1.0865
No log 1.3333 40 0.9499 0.5312 0.9499 0.9746
No log 1.4 42 0.8107 0.5304 0.8107 0.9004
No log 1.4667 44 0.6970 0.6075 0.6970 0.8348
No log 1.5333 46 0.7168 0.5674 0.7168 0.8467
No log 1.6 48 0.7132 0.5674 0.7132 0.8445
No log 1.6667 50 0.7372 0.5674 0.7372 0.8586
No log 1.7333 52 0.6976 0.5263 0.6976 0.8352
No log 1.8 54 0.7046 0.5413 0.7046 0.8394
No log 1.8667 56 0.7251 0.5545 0.7251 0.8515
No log 1.9333 58 0.7257 0.5811 0.7257 0.8519
No log 2.0 60 0.8599 0.7042 0.8599 0.9273
No log 2.0667 62 1.0463 0.5742 1.0463 1.0229
No log 2.1333 64 0.9787 0.6564 0.9787 0.9893
No log 2.2 66 0.8863 0.6503 0.8863 0.9414
No log 2.2667 68 0.8468 0.7123 0.8468 0.9202
No log 2.3333 70 0.7648 0.5723 0.7648 0.8745
No log 2.4 72 0.6991 0.5633 0.6991 0.8361
No log 2.4667 74 0.7304 0.5633 0.7304 0.8546
No log 2.5333 76 0.9507 0.7525 0.9507 0.9751
No log 2.6 78 1.1681 0.7221 1.1681 1.0808
No log 2.6667 80 1.1511 0.6127 1.1511 1.0729
No log 2.7333 82 0.9790 0.6776 0.9790 0.9894
No log 2.8 84 0.6980 0.7008 0.6980 0.8355
No log 2.8667 86 0.5887 0.6165 0.5887 0.7673
No log 2.9333 88 0.6506 0.6355 0.6506 0.8066
No log 3.0 90 0.5959 0.6355 0.5959 0.7719
No log 3.0667 92 0.5404 0.6719 0.5404 0.7351
No log 3.1333 94 0.7248 0.7986 0.7248 0.8514
No log 3.2 96 1.0280 0.6776 1.0280 1.0139
No log 3.2667 98 1.2998 0.6119 1.2998 1.1401
No log 3.3333 100 1.2866 0.6119 1.2866 1.1343
No log 3.4 102 1.0527 0.6550 1.0527 1.0260
No log 3.4667 104 0.7864 0.7627 0.7864 0.8868
No log 3.5333 106 0.6154 0.7439 0.6154 0.7845
No log 3.6 108 0.5424 0.7618 0.5424 0.7365
No log 3.6667 110 0.5244 0.7533 0.5244 0.7241
No log 3.7333 112 0.5468 0.7533 0.5468 0.7395
No log 3.8 114 0.6163 0.7355 0.6163 0.7851
No log 3.8667 116 0.6544 0.7439 0.6544 0.8089
No log 3.9333 118 0.6669 0.7439 0.6669 0.8166
No log 4.0 120 0.6427 0.7367 0.6427 0.8017
No log 4.0667 122 0.7210 0.7704 0.7210 0.8491
No log 4.1333 124 0.7779 0.7986 0.7779 0.8820
No log 4.2 126 0.7765 0.8168 0.7765 0.8812
No log 4.2667 128 0.7463 0.8168 0.7463 0.8639
No log 4.3333 130 0.6790 0.7439 0.6790 0.8240
No log 4.4 132 0.6092 0.7204 0.6092 0.7805
No log 4.4667 134 0.6065 0.7181 0.6065 0.7788
No log 4.5333 136 0.6599 0.7439 0.6599 0.8123
No log 4.6 138 0.7979 0.8098 0.7979 0.8933
No log 4.6667 140 0.8938 0.8098 0.8938 0.9454
No log 4.7333 142 0.8511 0.8098 0.8511 0.9225
No log 4.8 144 0.7067 0.7529 0.7067 0.8407
No log 4.8667 146 0.5945 0.7355 0.5945 0.7711
No log 4.9333 148 0.5649 0.7008 0.5649 0.7516
No log 5.0 150 0.5981 0.7355 0.5981 0.7733
No log 5.0667 152 0.6656 0.7529 0.6656 0.8159
No log 5.1333 154 0.7173 0.7529 0.7173 0.8469
No log 5.2 156 0.7542 0.7801 0.7542 0.8684
No log 5.2667 158 0.7518 0.7801 0.7518 0.8671
No log 5.3333 160 0.8161 0.7346 0.8161 0.9034
No log 5.4 162 0.8351 0.7779 0.8351 0.9139
No log 5.4667 164 0.7792 0.7779 0.7792 0.8827
No log 5.5333 166 0.7254 0.7196 0.7254 0.8517
No log 5.6 168 0.6935 0.7382 0.6935 0.8328
No log 5.6667 170 0.6844 0.7599 0.6844 0.8273
No log 5.7333 172 0.7231 0.7689 0.7231 0.8503
No log 5.8 174 0.7996 0.7525 0.7996 0.8942
No log 5.8667 176 0.8551 0.7616 0.8551 0.9247
No log 5.9333 178 0.8262 0.7616 0.8262 0.9090
No log 6.0 180 0.7452 0.8098 0.7452 0.8633
No log 6.0667 182 0.6525 0.7529 0.6525 0.8078
No log 6.1333 184 0.6447 0.7529 0.6447 0.8029
No log 6.2 186 0.6647 0.7529 0.6647 0.8153
No log 6.2667 188 0.7182 0.7529 0.7182 0.8474
No log 6.3333 190 0.8144 0.7937 0.8144 0.9024
No log 6.4 192 0.8856 0.7937 0.8856 0.9411
No log 6.4667 194 0.9341 0.7937 0.9341 0.9665
No log 6.5333 196 0.9351 0.7612 0.9351 0.9670
No log 6.6 198 0.8674 0.7979 0.8674 0.9313
No log 6.6667 200 0.8485 0.7979 0.8485 0.9211
No log 6.7333 202 0.8596 0.7979 0.8596 0.9272
No log 6.8 204 0.8493 0.7979 0.8493 0.9216
No log 6.8667 206 0.8583 0.7979 0.8583 0.9265
No log 6.9333 208 0.8988 0.7979 0.8988 0.9481
No log 7.0 210 0.8918 0.7979 0.8918 0.9444
No log 7.0667 212 0.8785 0.7430 0.8785 0.9373
No log 7.1333 214 0.8492 0.7144 0.8492 0.9215
No log 7.2 216 0.7861 0.7144 0.7861 0.8866
No log 7.2667 218 0.7437 0.6997 0.7437 0.8624
No log 7.3333 220 0.7548 0.6997 0.7548 0.8688
No log 7.4 222 0.7754 0.7268 0.7754 0.8806
No log 7.4667 224 0.7531 0.7268 0.7531 0.8678
No log 7.5333 226 0.7676 0.7268 0.7676 0.8761
No log 7.6 228 0.8205 0.7268 0.8205 0.9058
No log 7.6667 230 0.8726 0.7346 0.8726 0.9341
No log 7.7333 232 0.8584 0.7346 0.8584 0.9265
No log 7.8 234 0.8172 0.7346 0.8172 0.9040
No log 7.8667 236 0.8080 0.7268 0.8080 0.8989
No log 7.9333 238 0.8049 0.7268 0.8049 0.8972
No log 8.0 240 0.8290 0.7268 0.8290 0.9105
No log 8.0667 242 0.8446 0.7268 0.8446 0.9190
No log 8.1333 244 0.8433 0.7268 0.8433 0.9183
No log 8.2 246 0.8181 0.7268 0.8181 0.9045
No log 8.2667 248 0.8030 0.7268 0.8030 0.8961
No log 8.3333 250 0.7975 0.7268 0.7975 0.8930
No log 8.4 252 0.8155 0.6997 0.8155 0.9030
No log 8.4667 254 0.8388 0.7068 0.8388 0.9159
No log 8.5333 256 0.8509 0.7068 0.8509 0.9225
No log 8.6 258 0.8361 0.7068 0.8361 0.9144
No log 8.6667 260 0.8024 0.6997 0.8024 0.8958
No log 8.7333 262 0.7665 0.6997 0.7665 0.8755
No log 8.8 264 0.7415 0.6932 0.7415 0.8611
No log 8.8667 266 0.7288 0.6932 0.7288 0.8537
No log 8.9333 268 0.7342 0.6932 0.7342 0.8568
No log 9.0 270 0.7290 0.6932 0.7290 0.8538
No log 9.0667 272 0.7358 0.6932 0.7358 0.8578
No log 9.1333 274 0.7405 0.7196 0.7405 0.8605
No log 9.2 276 0.7587 0.7196 0.7587 0.8711
No log 9.2667 278 0.7844 0.7196 0.7844 0.8856
No log 9.3333 280 0.8017 0.7268 0.8017 0.8954
No log 9.4 282 0.8107 0.7268 0.8107 0.9004
No log 9.4667 284 0.8114 0.7268 0.8114 0.9008
No log 9.5333 286 0.8111 0.7268 0.8111 0.9006
No log 9.6 288 0.8117 0.7268 0.8117 0.9009
No log 9.6667 290 0.8142 0.7346 0.8142 0.9023
No log 9.7333 292 0.8104 0.7268 0.8104 0.9002
No log 9.8 294 0.8107 0.7268 0.8107 0.9004
No log 9.8667 296 0.8083 0.7268 0.8083 0.8991
No log 9.9333 298 0.8059 0.7268 0.8059 0.8977
No log 10.0 300 0.8043 0.7268 0.8043 0.8968

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
162
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for MayBashendy/Arabic_FineTuningAraBERT_AugV4-trial2_k1_task1_organization_fold0

Finetuned
(4222)
this model