Arabic_FineTuningAraBERT_AugV0_k2_task1_organization_fold1
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3885
- Qwk: 0.7368
- Mse: 0.3885
- Rmse: 0.6233
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.0952 | 2 | 3.1653 | 0.0315 | 3.1653 | 1.7791 |
No log | 0.1905 | 4 | 1.4373 | 0.1064 | 1.4373 | 1.1989 |
No log | 0.2857 | 6 | 1.1174 | 0.1860 | 1.1174 | 1.0571 |
No log | 0.3810 | 8 | 0.8149 | 0.3497 | 0.8149 | 0.9027 |
No log | 0.4762 | 10 | 0.8664 | 0.2613 | 0.8664 | 0.9308 |
No log | 0.5714 | 12 | 0.6495 | 0.4556 | 0.6495 | 0.8059 |
No log | 0.6667 | 14 | 0.5543 | 0.5625 | 0.5543 | 0.7445 |
No log | 0.7619 | 16 | 0.7081 | 0.4706 | 0.7081 | 0.8415 |
No log | 0.8571 | 18 | 1.1308 | 0.4207 | 1.1308 | 1.0634 |
No log | 0.9524 | 20 | 1.0216 | 0.4577 | 1.0216 | 1.0107 |
No log | 1.0476 | 22 | 0.5026 | 0.6379 | 0.5026 | 0.7089 |
No log | 1.1429 | 24 | 0.4569 | 0.5484 | 0.4569 | 0.6760 |
No log | 1.2381 | 26 | 0.4653 | 0.5484 | 0.4653 | 0.6821 |
No log | 1.3333 | 28 | 0.4723 | 0.5670 | 0.4723 | 0.6872 |
No log | 1.4286 | 30 | 0.4227 | 0.6529 | 0.4227 | 0.6501 |
No log | 1.5238 | 32 | 0.4257 | 0.6566 | 0.4257 | 0.6525 |
No log | 1.6190 | 34 | 0.4279 | 0.6889 | 0.4279 | 0.6541 |
No log | 1.7143 | 36 | 0.4475 | 0.72 | 0.4475 | 0.6690 |
No log | 1.8095 | 38 | 0.4602 | 0.7336 | 0.4602 | 0.6784 |
No log | 1.9048 | 40 | 0.4622 | 0.7658 | 0.4622 | 0.6799 |
No log | 2.0 | 42 | 0.4505 | 0.7222 | 0.4505 | 0.6712 |
No log | 2.0952 | 44 | 0.4200 | 0.7222 | 0.4200 | 0.6480 |
No log | 2.1905 | 46 | 0.4052 | 0.6912 | 0.4052 | 0.6366 |
No log | 2.2857 | 48 | 0.4296 | 0.72 | 0.4296 | 0.6555 |
No log | 2.3810 | 50 | 0.4814 | 0.7123 | 0.4814 | 0.6939 |
No log | 2.4762 | 52 | 0.5409 | 0.7308 | 0.5409 | 0.7354 |
No log | 2.5714 | 54 | 0.5819 | 0.7111 | 0.5819 | 0.7628 |
No log | 2.6667 | 56 | 0.6055 | 0.7251 | 0.6055 | 0.7781 |
No log | 2.7619 | 58 | 0.6857 | 0.6198 | 0.6857 | 0.8281 |
No log | 2.8571 | 60 | 0.6122 | 0.6364 | 0.6122 | 0.7824 |
No log | 2.9524 | 62 | 0.4872 | 0.7183 | 0.4872 | 0.6980 |
No log | 3.0476 | 64 | 0.4478 | 0.6851 | 0.4478 | 0.6692 |
No log | 3.1429 | 66 | 0.4654 | 0.7368 | 0.4654 | 0.6822 |
No log | 3.2381 | 68 | 0.4401 | 0.7529 | 0.4401 | 0.6634 |
No log | 3.3333 | 70 | 0.4140 | 0.6288 | 0.4140 | 0.6434 |
No log | 3.4286 | 72 | 0.4358 | 0.7287 | 0.4358 | 0.6601 |
No log | 3.5238 | 74 | 0.4958 | 0.7222 | 0.4958 | 0.7041 |
No log | 3.6190 | 76 | 0.4827 | 0.7072 | 0.4827 | 0.6948 |
No log | 3.7143 | 78 | 0.4708 | 0.7072 | 0.4708 | 0.6861 |
No log | 3.8095 | 80 | 0.4604 | 0.7072 | 0.4604 | 0.6785 |
No log | 3.9048 | 82 | 0.4697 | 0.7072 | 0.4697 | 0.6853 |
No log | 4.0 | 84 | 0.4836 | 0.6423 | 0.4836 | 0.6954 |
No log | 4.0952 | 86 | 0.4701 | 0.5882 | 0.4701 | 0.6856 |
No log | 4.1905 | 88 | 0.4728 | 0.6711 | 0.4728 | 0.6876 |
No log | 4.2857 | 90 | 0.4808 | 0.6164 | 0.4808 | 0.6934 |
No log | 4.3810 | 92 | 0.5289 | 0.6500 | 0.5289 | 0.7272 |
No log | 4.4762 | 94 | 0.5980 | 0.7159 | 0.5980 | 0.7733 |
No log | 4.5714 | 96 | 0.5975 | 0.7159 | 0.5975 | 0.7730 |
No log | 4.6667 | 98 | 0.5620 | 0.7159 | 0.5620 | 0.7497 |
No log | 4.7619 | 100 | 0.5196 | 0.6617 | 0.5196 | 0.7208 |
No log | 4.8571 | 102 | 0.4729 | 0.6617 | 0.4729 | 0.6877 |
No log | 4.9524 | 104 | 0.4864 | 0.7605 | 0.4864 | 0.6974 |
No log | 5.0476 | 106 | 0.4598 | 0.7154 | 0.4598 | 0.6781 |
No log | 5.1429 | 108 | 0.4237 | 0.7605 | 0.4237 | 0.6510 |
No log | 5.2381 | 110 | 0.4292 | 0.7605 | 0.4292 | 0.6551 |
No log | 5.3333 | 112 | 0.4053 | 0.7605 | 0.4053 | 0.6367 |
No log | 5.4286 | 114 | 0.3604 | 0.7712 | 0.3604 | 0.6003 |
No log | 5.5238 | 116 | 0.3602 | 0.7907 | 0.3602 | 0.6002 |
No log | 5.6190 | 118 | 0.3629 | 0.7508 | 0.3629 | 0.6024 |
No log | 5.7143 | 120 | 0.3661 | 0.7921 | 0.3661 | 0.6051 |
No log | 5.8095 | 122 | 0.3626 | 0.7921 | 0.3626 | 0.6021 |
No log | 5.9048 | 124 | 0.3573 | 0.7336 | 0.3573 | 0.5978 |
No log | 6.0 | 126 | 0.3672 | 0.6912 | 0.3672 | 0.6059 |
No log | 6.0952 | 128 | 0.4076 | 0.7138 | 0.4076 | 0.6384 |
No log | 6.1905 | 130 | 0.4730 | 0.7159 | 0.4730 | 0.6878 |
No log | 6.2857 | 132 | 0.4904 | 0.7159 | 0.4904 | 0.7003 |
No log | 6.3810 | 134 | 0.4566 | 0.75 | 0.4566 | 0.6757 |
No log | 6.4762 | 136 | 0.4396 | 0.75 | 0.4396 | 0.6630 |
No log | 6.5714 | 138 | 0.4310 | 0.7375 | 0.4310 | 0.6565 |
No log | 6.6667 | 140 | 0.4317 | 0.7375 | 0.4317 | 0.6571 |
No log | 6.7619 | 142 | 0.4392 | 0.7667 | 0.4392 | 0.6627 |
No log | 6.8571 | 144 | 0.4407 | 0.75 | 0.4407 | 0.6638 |
No log | 6.9524 | 146 | 0.4818 | 0.7154 | 0.4818 | 0.6941 |
No log | 7.0476 | 148 | 0.5411 | 0.6038 | 0.5411 | 0.7356 |
No log | 7.1429 | 150 | 0.5509 | 0.6038 | 0.5509 | 0.7423 |
No log | 7.2381 | 152 | 0.5148 | 0.7004 | 0.5148 | 0.7175 |
No log | 7.3333 | 154 | 0.4629 | 0.7154 | 0.4629 | 0.6804 |
No log | 7.4286 | 156 | 0.4404 | 0.7063 | 0.4404 | 0.6636 |
No log | 7.5238 | 158 | 0.4411 | 0.7508 | 0.4411 | 0.6642 |
No log | 7.6190 | 160 | 0.4374 | 0.6859 | 0.4374 | 0.6613 |
No log | 7.7143 | 162 | 0.4352 | 0.7111 | 0.4352 | 0.6597 |
No log | 7.8095 | 164 | 0.4350 | 0.7508 | 0.4350 | 0.6595 |
No log | 7.9048 | 166 | 0.4505 | 0.7255 | 0.4505 | 0.6712 |
No log | 8.0 | 168 | 0.4721 | 0.7368 | 0.4721 | 0.6871 |
No log | 8.0952 | 170 | 0.4975 | 0.7368 | 0.4975 | 0.7053 |
No log | 8.1905 | 172 | 0.4939 | 0.7605 | 0.4939 | 0.7028 |
No log | 8.2857 | 174 | 0.4707 | 0.7368 | 0.4707 | 0.6861 |
No log | 8.3810 | 176 | 0.4316 | 0.7138 | 0.4316 | 0.6570 |
No log | 8.4762 | 178 | 0.3949 | 0.7063 | 0.3949 | 0.6284 |
No log | 8.5714 | 180 | 0.3833 | 0.7063 | 0.3833 | 0.6191 |
No log | 8.6667 | 182 | 0.3833 | 0.7063 | 0.3833 | 0.6191 |
No log | 8.7619 | 184 | 0.3872 | 0.7138 | 0.3872 | 0.6223 |
No log | 8.8571 | 186 | 0.3980 | 0.7368 | 0.3980 | 0.6308 |
No log | 8.9524 | 188 | 0.4056 | 0.6908 | 0.4056 | 0.6369 |
No log | 9.0476 | 190 | 0.4250 | 0.7154 | 0.4250 | 0.6519 |
No log | 9.1429 | 192 | 0.4358 | 0.7154 | 0.4358 | 0.6601 |
No log | 9.2381 | 194 | 0.4337 | 0.7154 | 0.4337 | 0.6586 |
No log | 9.3333 | 196 | 0.4213 | 0.7154 | 0.4213 | 0.6490 |
No log | 9.4286 | 198 | 0.4062 | 0.7154 | 0.4062 | 0.6373 |
No log | 9.5238 | 200 | 0.3933 | 0.6908 | 0.3933 | 0.6271 |
No log | 9.6190 | 202 | 0.3903 | 0.6908 | 0.3903 | 0.6247 |
No log | 9.7143 | 204 | 0.3905 | 0.6908 | 0.3905 | 0.6249 |
No log | 9.8095 | 206 | 0.3890 | 0.7368 | 0.3890 | 0.6237 |
No log | 9.9048 | 208 | 0.3883 | 0.7368 | 0.3883 | 0.6232 |
No log | 10.0 | 210 | 0.3885 | 0.7368 | 0.3885 | 0.6233 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 160
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for MayBashendy/Arabic_FineTuningAraBERT_AugV0_k2_task1_organization_fold1
Base model
aubmindlab/bert-base-arabertv02