Arabic_FineTuningAraBERT_AugV0_k2_task1_organization_fold0
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.1245
- Qwk: 0.5581
- Mse: 1.1245
- Rmse: 1.0604
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.0870 | 2 | 4.8771 | 0.0223 | 4.8771 | 2.2084 |
No log | 0.1739 | 4 | 2.9988 | 0.2336 | 2.9988 | 1.7317 |
No log | 0.2609 | 6 | 1.7197 | 0.1736 | 1.7197 | 1.3114 |
No log | 0.3478 | 8 | 1.5871 | 0.0466 | 1.5871 | 1.2598 |
No log | 0.4348 | 10 | 1.7548 | -0.1681 | 1.7548 | 1.3247 |
No log | 0.5217 | 12 | 1.6763 | 0.1873 | 1.6763 | 1.2947 |
No log | 0.6087 | 14 | 1.7060 | 0.0801 | 1.7060 | 1.3061 |
No log | 0.6957 | 16 | 1.4919 | 0.1600 | 1.4919 | 1.2214 |
No log | 0.7826 | 18 | 1.3312 | 0.3337 | 1.3312 | 1.1538 |
No log | 0.8696 | 20 | 1.2898 | 0.2827 | 1.2898 | 1.1357 |
No log | 0.9565 | 22 | 1.3051 | 0.2827 | 1.3051 | 1.1424 |
No log | 1.0435 | 24 | 1.4217 | 0.3378 | 1.4217 | 1.1923 |
No log | 1.1304 | 26 | 1.5271 | 0.3150 | 1.5271 | 1.2357 |
No log | 1.2174 | 28 | 1.5111 | 0.3378 | 1.5111 | 1.2293 |
No log | 1.3043 | 30 | 1.3784 | 0.3255 | 1.3784 | 1.1741 |
No log | 1.3913 | 32 | 1.3112 | 0.4035 | 1.3112 | 1.1451 |
No log | 1.4783 | 34 | 1.3169 | 0.4167 | 1.3169 | 1.1476 |
No log | 1.5652 | 36 | 1.2107 | 0.3848 | 1.2107 | 1.1003 |
No log | 1.6522 | 38 | 1.1383 | 0.4812 | 1.1383 | 1.0669 |
No log | 1.7391 | 40 | 1.3673 | 0.2536 | 1.3673 | 1.1693 |
No log | 1.8261 | 42 | 1.3918 | 0.1873 | 1.3918 | 1.1798 |
No log | 1.9130 | 44 | 1.2654 | 0.1873 | 1.2654 | 1.1249 |
No log | 2.0 | 46 | 1.1867 | 0.2145 | 1.1867 | 1.0894 |
No log | 2.0870 | 48 | 1.2041 | 0.2145 | 1.2041 | 1.0973 |
No log | 2.1739 | 50 | 1.1810 | 0.2145 | 1.1810 | 1.0867 |
No log | 2.2609 | 52 | 1.2411 | 0.2536 | 1.2411 | 1.1140 |
No log | 2.3478 | 54 | 1.3911 | 0.2536 | 1.3911 | 1.1795 |
No log | 2.4348 | 56 | 1.3187 | 0.2793 | 1.3187 | 1.1484 |
No log | 2.5217 | 58 | 1.0885 | 0.4615 | 1.0885 | 1.0433 |
No log | 2.6087 | 60 | 1.0009 | 0.5495 | 1.0009 | 1.0005 |
No log | 2.6957 | 62 | 1.0292 | 0.5056 | 1.0292 | 1.0145 |
No log | 2.7826 | 64 | 1.1576 | 0.4464 | 1.1576 | 1.0759 |
No log | 2.8696 | 66 | 1.4654 | 0.3775 | 1.4654 | 1.2105 |
No log | 2.9565 | 68 | 1.5531 | 0.2207 | 1.5531 | 1.2462 |
No log | 3.0435 | 70 | 1.4539 | 0.3806 | 1.4539 | 1.2058 |
No log | 3.1304 | 72 | 1.1604 | 0.4421 | 1.1604 | 1.0772 |
No log | 3.2174 | 74 | 1.1125 | 0.4592 | 1.1125 | 1.0548 |
No log | 3.3043 | 76 | 1.2317 | 0.3058 | 1.2317 | 1.1098 |
No log | 3.3913 | 78 | 1.5440 | 0.3064 | 1.5440 | 1.2426 |
No log | 3.4783 | 80 | 1.5929 | 0.3064 | 1.5929 | 1.2621 |
No log | 3.5652 | 82 | 1.3739 | 0.375 | 1.3739 | 1.1721 |
No log | 3.6522 | 84 | 1.0956 | 0.3519 | 1.0956 | 1.0467 |
No log | 3.7391 | 86 | 1.0496 | 0.4373 | 1.0496 | 1.0245 |
No log | 3.8261 | 88 | 1.2119 | 0.5413 | 1.2119 | 1.1009 |
No log | 3.9130 | 90 | 1.4977 | 0.3191 | 1.4977 | 1.2238 |
No log | 4.0 | 92 | 1.5862 | 0.3191 | 1.5862 | 1.2594 |
No log | 4.0870 | 94 | 1.4141 | 0.3501 | 1.4141 | 1.1891 |
No log | 4.1739 | 96 | 1.1525 | 0.4806 | 1.1525 | 1.0736 |
No log | 4.2609 | 98 | 1.1410 | 0.5174 | 1.1410 | 1.0682 |
No log | 4.3478 | 100 | 1.2549 | 0.4418 | 1.2549 | 1.1202 |
No log | 4.4348 | 102 | 1.3846 | 0.3501 | 1.3846 | 1.1767 |
No log | 4.5217 | 104 | 1.5156 | 0.3681 | 1.5156 | 1.2311 |
No log | 4.6087 | 106 | 1.4268 | 0.3681 | 1.4268 | 1.1945 |
No log | 4.6957 | 108 | 1.2425 | 0.5581 | 1.2425 | 1.1147 |
No log | 4.7826 | 110 | 1.1177 | 0.5820 | 1.1177 | 1.0572 |
No log | 4.8696 | 112 | 1.1695 | 0.4810 | 1.1695 | 1.0814 |
No log | 4.9565 | 114 | 1.1980 | 0.4810 | 1.1980 | 1.0945 |
No log | 5.0435 | 116 | 1.1924 | 0.5581 | 1.1924 | 1.0919 |
No log | 5.1304 | 118 | 1.2434 | 0.5581 | 1.2434 | 1.1151 |
No log | 5.2174 | 120 | 1.1336 | 0.5933 | 1.1336 | 1.0647 |
No log | 5.3043 | 122 | 1.0399 | 0.5752 | 1.0399 | 1.0198 |
No log | 5.3913 | 124 | 0.9566 | 0.5562 | 0.9566 | 0.9781 |
No log | 5.4783 | 126 | 1.0093 | 0.5729 | 1.0093 | 1.0047 |
No log | 5.5652 | 128 | 1.2128 | 0.5933 | 1.2128 | 1.1013 |
No log | 5.6522 | 130 | 1.3735 | 0.4460 | 1.3735 | 1.1720 |
No log | 5.7391 | 132 | 1.3097 | 0.5183 | 1.3097 | 1.1444 |
No log | 5.8261 | 134 | 1.1758 | 0.5933 | 1.1758 | 1.0844 |
No log | 5.9130 | 136 | 1.0889 | 0.5933 | 1.0889 | 1.0435 |
No log | 6.0 | 138 | 1.0793 | 0.6253 | 1.0793 | 1.0389 |
No log | 6.0870 | 140 | 1.2242 | 0.5926 | 1.2242 | 1.1065 |
No log | 6.1739 | 142 | 1.4743 | 0.2967 | 1.4743 | 1.2142 |
No log | 6.2609 | 144 | 1.5555 | 0.3184 | 1.5555 | 1.2472 |
No log | 6.3478 | 146 | 1.4373 | 0.3248 | 1.4373 | 1.1989 |
No log | 6.4348 | 148 | 1.2176 | 0.5926 | 1.2176 | 1.1035 |
No log | 6.5217 | 150 | 1.0491 | 0.5581 | 1.0491 | 1.0243 |
No log | 6.6087 | 152 | 1.0248 | 0.5581 | 1.0248 | 1.0123 |
No log | 6.6957 | 154 | 1.0521 | 0.5581 | 1.0521 | 1.0257 |
No log | 6.7826 | 156 | 1.0764 | 0.5581 | 1.0764 | 1.0375 |
No log | 6.8696 | 158 | 1.1655 | 0.5581 | 1.1655 | 1.0796 |
No log | 6.9565 | 160 | 1.1920 | 0.5581 | 1.1920 | 1.0918 |
No log | 7.0435 | 162 | 1.1165 | 0.5581 | 1.1165 | 1.0566 |
No log | 7.1304 | 164 | 1.1136 | 0.5581 | 1.1136 | 1.0553 |
No log | 7.2174 | 166 | 1.1043 | 0.5581 | 1.1043 | 1.0509 |
No log | 7.3043 | 168 | 1.0223 | 0.5581 | 1.0223 | 1.0111 |
No log | 7.3913 | 170 | 1.0369 | 0.5581 | 1.0369 | 1.0183 |
No log | 7.4783 | 172 | 1.0919 | 0.5581 | 1.0919 | 1.0449 |
No log | 7.5652 | 174 | 1.1820 | 0.5581 | 1.1820 | 1.0872 |
No log | 7.6522 | 176 | 1.3040 | 0.5185 | 1.3040 | 1.1419 |
No log | 7.7391 | 178 | 1.2967 | 0.5185 | 1.2967 | 1.1387 |
No log | 7.8261 | 180 | 1.2493 | 0.4803 | 1.2493 | 1.1177 |
No log | 7.9130 | 182 | 1.1732 | 0.5573 | 1.1732 | 1.0831 |
No log | 8.0 | 184 | 1.1278 | 0.5573 | 1.1278 | 1.0620 |
No log | 8.0870 | 186 | 1.1087 | 0.5573 | 1.1087 | 1.0530 |
No log | 8.1739 | 188 | 1.0904 | 0.5573 | 1.0904 | 1.0442 |
No log | 8.2609 | 190 | 1.1249 | 0.5573 | 1.1249 | 1.0606 |
No log | 8.3478 | 192 | 1.1256 | 0.5573 | 1.1256 | 1.0609 |
No log | 8.4348 | 194 | 1.1731 | 0.5581 | 1.1731 | 1.0831 |
No log | 8.5217 | 196 | 1.2350 | 0.5185 | 1.2350 | 1.1113 |
No log | 8.6087 | 198 | 1.2607 | 0.5185 | 1.2607 | 1.1228 |
No log | 8.6957 | 200 | 1.2787 | 0.5185 | 1.2787 | 1.1308 |
No log | 8.7826 | 202 | 1.2574 | 0.5185 | 1.2574 | 1.1213 |
No log | 8.8696 | 204 | 1.2688 | 0.5185 | 1.2688 | 1.1264 |
No log | 8.9565 | 206 | 1.2600 | 0.5185 | 1.2600 | 1.1225 |
No log | 9.0435 | 208 | 1.2292 | 0.5185 | 1.2292 | 1.1087 |
No log | 9.1304 | 210 | 1.2489 | 0.5185 | 1.2489 | 1.1176 |
No log | 9.2174 | 212 | 1.2642 | 0.5185 | 1.2642 | 1.1244 |
No log | 9.3043 | 214 | 1.2556 | 0.5185 | 1.2556 | 1.1206 |
No log | 9.3913 | 216 | 1.2347 | 0.5185 | 1.2347 | 1.1112 |
No log | 9.4783 | 218 | 1.2186 | 0.5185 | 1.2186 | 1.1039 |
No log | 9.5652 | 220 | 1.1884 | 0.5581 | 1.1884 | 1.0901 |
No log | 9.6522 | 222 | 1.1624 | 0.5581 | 1.1624 | 1.0781 |
No log | 9.7391 | 224 | 1.1474 | 0.5581 | 1.1474 | 1.0712 |
No log | 9.8261 | 226 | 1.1374 | 0.5581 | 1.1374 | 1.0665 |
No log | 9.9130 | 228 | 1.1287 | 0.5581 | 1.1287 | 1.0624 |
No log | 10.0 | 230 | 1.1245 | 0.5581 | 1.1245 | 1.0604 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 160
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for MayBashendy/Arabic_FineTuningAraBERT_AugV0_k2_task1_organization_fold0
Base model
aubmindlab/bert-base-arabertv02