Arabic_FineTuningAraBERT_AugV0_k2_task1_organization_fold0

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1245
  • Qwk: 0.5581
  • Mse: 1.1245
  • Rmse: 1.0604

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 0.0870 2 4.8771 0.0223 4.8771 2.2084
No log 0.1739 4 2.9988 0.2336 2.9988 1.7317
No log 0.2609 6 1.7197 0.1736 1.7197 1.3114
No log 0.3478 8 1.5871 0.0466 1.5871 1.2598
No log 0.4348 10 1.7548 -0.1681 1.7548 1.3247
No log 0.5217 12 1.6763 0.1873 1.6763 1.2947
No log 0.6087 14 1.7060 0.0801 1.7060 1.3061
No log 0.6957 16 1.4919 0.1600 1.4919 1.2214
No log 0.7826 18 1.3312 0.3337 1.3312 1.1538
No log 0.8696 20 1.2898 0.2827 1.2898 1.1357
No log 0.9565 22 1.3051 0.2827 1.3051 1.1424
No log 1.0435 24 1.4217 0.3378 1.4217 1.1923
No log 1.1304 26 1.5271 0.3150 1.5271 1.2357
No log 1.2174 28 1.5111 0.3378 1.5111 1.2293
No log 1.3043 30 1.3784 0.3255 1.3784 1.1741
No log 1.3913 32 1.3112 0.4035 1.3112 1.1451
No log 1.4783 34 1.3169 0.4167 1.3169 1.1476
No log 1.5652 36 1.2107 0.3848 1.2107 1.1003
No log 1.6522 38 1.1383 0.4812 1.1383 1.0669
No log 1.7391 40 1.3673 0.2536 1.3673 1.1693
No log 1.8261 42 1.3918 0.1873 1.3918 1.1798
No log 1.9130 44 1.2654 0.1873 1.2654 1.1249
No log 2.0 46 1.1867 0.2145 1.1867 1.0894
No log 2.0870 48 1.2041 0.2145 1.2041 1.0973
No log 2.1739 50 1.1810 0.2145 1.1810 1.0867
No log 2.2609 52 1.2411 0.2536 1.2411 1.1140
No log 2.3478 54 1.3911 0.2536 1.3911 1.1795
No log 2.4348 56 1.3187 0.2793 1.3187 1.1484
No log 2.5217 58 1.0885 0.4615 1.0885 1.0433
No log 2.6087 60 1.0009 0.5495 1.0009 1.0005
No log 2.6957 62 1.0292 0.5056 1.0292 1.0145
No log 2.7826 64 1.1576 0.4464 1.1576 1.0759
No log 2.8696 66 1.4654 0.3775 1.4654 1.2105
No log 2.9565 68 1.5531 0.2207 1.5531 1.2462
No log 3.0435 70 1.4539 0.3806 1.4539 1.2058
No log 3.1304 72 1.1604 0.4421 1.1604 1.0772
No log 3.2174 74 1.1125 0.4592 1.1125 1.0548
No log 3.3043 76 1.2317 0.3058 1.2317 1.1098
No log 3.3913 78 1.5440 0.3064 1.5440 1.2426
No log 3.4783 80 1.5929 0.3064 1.5929 1.2621
No log 3.5652 82 1.3739 0.375 1.3739 1.1721
No log 3.6522 84 1.0956 0.3519 1.0956 1.0467
No log 3.7391 86 1.0496 0.4373 1.0496 1.0245
No log 3.8261 88 1.2119 0.5413 1.2119 1.1009
No log 3.9130 90 1.4977 0.3191 1.4977 1.2238
No log 4.0 92 1.5862 0.3191 1.5862 1.2594
No log 4.0870 94 1.4141 0.3501 1.4141 1.1891
No log 4.1739 96 1.1525 0.4806 1.1525 1.0736
No log 4.2609 98 1.1410 0.5174 1.1410 1.0682
No log 4.3478 100 1.2549 0.4418 1.2549 1.1202
No log 4.4348 102 1.3846 0.3501 1.3846 1.1767
No log 4.5217 104 1.5156 0.3681 1.5156 1.2311
No log 4.6087 106 1.4268 0.3681 1.4268 1.1945
No log 4.6957 108 1.2425 0.5581 1.2425 1.1147
No log 4.7826 110 1.1177 0.5820 1.1177 1.0572
No log 4.8696 112 1.1695 0.4810 1.1695 1.0814
No log 4.9565 114 1.1980 0.4810 1.1980 1.0945
No log 5.0435 116 1.1924 0.5581 1.1924 1.0919
No log 5.1304 118 1.2434 0.5581 1.2434 1.1151
No log 5.2174 120 1.1336 0.5933 1.1336 1.0647
No log 5.3043 122 1.0399 0.5752 1.0399 1.0198
No log 5.3913 124 0.9566 0.5562 0.9566 0.9781
No log 5.4783 126 1.0093 0.5729 1.0093 1.0047
No log 5.5652 128 1.2128 0.5933 1.2128 1.1013
No log 5.6522 130 1.3735 0.4460 1.3735 1.1720
No log 5.7391 132 1.3097 0.5183 1.3097 1.1444
No log 5.8261 134 1.1758 0.5933 1.1758 1.0844
No log 5.9130 136 1.0889 0.5933 1.0889 1.0435
No log 6.0 138 1.0793 0.6253 1.0793 1.0389
No log 6.0870 140 1.2242 0.5926 1.2242 1.1065
No log 6.1739 142 1.4743 0.2967 1.4743 1.2142
No log 6.2609 144 1.5555 0.3184 1.5555 1.2472
No log 6.3478 146 1.4373 0.3248 1.4373 1.1989
No log 6.4348 148 1.2176 0.5926 1.2176 1.1035
No log 6.5217 150 1.0491 0.5581 1.0491 1.0243
No log 6.6087 152 1.0248 0.5581 1.0248 1.0123
No log 6.6957 154 1.0521 0.5581 1.0521 1.0257
No log 6.7826 156 1.0764 0.5581 1.0764 1.0375
No log 6.8696 158 1.1655 0.5581 1.1655 1.0796
No log 6.9565 160 1.1920 0.5581 1.1920 1.0918
No log 7.0435 162 1.1165 0.5581 1.1165 1.0566
No log 7.1304 164 1.1136 0.5581 1.1136 1.0553
No log 7.2174 166 1.1043 0.5581 1.1043 1.0509
No log 7.3043 168 1.0223 0.5581 1.0223 1.0111
No log 7.3913 170 1.0369 0.5581 1.0369 1.0183
No log 7.4783 172 1.0919 0.5581 1.0919 1.0449
No log 7.5652 174 1.1820 0.5581 1.1820 1.0872
No log 7.6522 176 1.3040 0.5185 1.3040 1.1419
No log 7.7391 178 1.2967 0.5185 1.2967 1.1387
No log 7.8261 180 1.2493 0.4803 1.2493 1.1177
No log 7.9130 182 1.1732 0.5573 1.1732 1.0831
No log 8.0 184 1.1278 0.5573 1.1278 1.0620
No log 8.0870 186 1.1087 0.5573 1.1087 1.0530
No log 8.1739 188 1.0904 0.5573 1.0904 1.0442
No log 8.2609 190 1.1249 0.5573 1.1249 1.0606
No log 8.3478 192 1.1256 0.5573 1.1256 1.0609
No log 8.4348 194 1.1731 0.5581 1.1731 1.0831
No log 8.5217 196 1.2350 0.5185 1.2350 1.1113
No log 8.6087 198 1.2607 0.5185 1.2607 1.1228
No log 8.6957 200 1.2787 0.5185 1.2787 1.1308
No log 8.7826 202 1.2574 0.5185 1.2574 1.1213
No log 8.8696 204 1.2688 0.5185 1.2688 1.1264
No log 8.9565 206 1.2600 0.5185 1.2600 1.1225
No log 9.0435 208 1.2292 0.5185 1.2292 1.1087
No log 9.1304 210 1.2489 0.5185 1.2489 1.1176
No log 9.2174 212 1.2642 0.5185 1.2642 1.1244
No log 9.3043 214 1.2556 0.5185 1.2556 1.1206
No log 9.3913 216 1.2347 0.5185 1.2347 1.1112
No log 9.4783 218 1.2186 0.5185 1.2186 1.1039
No log 9.5652 220 1.1884 0.5581 1.1884 1.0901
No log 9.6522 222 1.1624 0.5581 1.1624 1.0781
No log 9.7391 224 1.1474 0.5581 1.1474 1.0712
No log 9.8261 226 1.1374 0.5581 1.1374 1.0665
No log 9.9130 228 1.1287 0.5581 1.1287 1.0624
No log 10.0 230 1.1245 0.5581 1.1245 1.0604

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
160
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for MayBashendy/Arabic_FineTuningAraBERT_AugV0_k2_task1_organization_fold0

Finetuned
(4206)
this model